summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_A._K._Tayal/Chapter2.ipynb
blob: c7f489002e774a47e20d96bda96f6913f13120a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 2 Parallel Forces in a Plane"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.1 CFP"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The magnitude of resultant is 145.465646 Newton (N)\n",
      "The direction of resultant is 35.103909 degree\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#Initilization of variables\n",
    "P=50 #N\n",
    "Q=100 #N\n",
    "beta=150 #degree # angle between P & the horizontal\n",
    "#Calculations\n",
    "R=math.sqrt(P**2+Q**2-(2*P*Q*math.cos(beta*math.pi/180))) # using the Trignometric solution\n",
    "Alpha=math.degrees(math.asin((math.sin(beta*math.pi/180)*Q)/R))+15\n",
    "#Result\n",
    "print('The magnitude of resultant is %f Newton (N)'%R)\n",
    "print('The direction of resultant is %f degree'%Alpha)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.2 Addition of concurrent forces"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The magnitude of the resultant is 145.465646 N\n",
      "The ange of the resultant with x-axis is 35.103909 degree\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "P=50 #N\n",
    "Q=100 #N\n",
    "beta=15 #degree # angle between P& the horizontal\n",
    "theta=45 #degree # angle between the resultant (R) & the horizontal\n",
    "#Calculations\n",
    "Rx=P*math.cos(beta*math.pi/180)+Q*math.cos(theta*math.pi/180) #N\n",
    "Ry=P*math.sin(beta*math.pi/180)+Q*math.sin(theta*math.pi/180) #N\n",
    "R=math.sqrt((Rx**2)+(Ry**2)) #N\n",
    "alpha=math.degrees(math.atan(Ry/Rx)) #degree\n",
    "#Results\n",
    "print('The magnitude of the resultant is %f N'%R)\n",
    "print('The ange of the resultant with x-axis is %f degree'%alpha)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.4 Equilibrium equations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The maximum force that can be applied is 4.015035 kN\n",
      "The direction of applied force is 75.000000  degree\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "Tac=3.5 #kN\n",
    "Tbc=3.5 #kN\n",
    "alpha=20 #degree #angle made by Tac with -ve X axis\n",
    "beta=50 #degree #angle made by Tbc with +ve X axis\n",
    "#Calculations\n",
    "theta=math.degrees(math.atan(((Tac*math.sin(alpha*math.pi/180))+(Tbc*math.sin(beta*math.pi/180)))/((Tac*math.cos(alpha*math.pi/180))-(Tbc*math.cos(beta*math.pi/180))))) #degree\n",
    "P=Tac*(math.cos(alpha*math.pi/180)-math.cos(beta*math.pi/180))/(math.cos(theta*math.pi/180)) #kN # from eq'n 1\n",
    "#Results\n",
    "print('The maximum force that can be applied is %f kN'%P)\n",
    "print('The direction of applied force is %f  degree'%theta)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.8 Equilibrium of a body subjected to two forces"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The angle which the force should make with the horizontal to keep the edge AB of the body vertical 53.130102 degree\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "lAB=0.4 #m\n",
    "lBC=0.3 #m\n",
    "#Calculations\n",
    "alpha=math.degrees(math.atan(lAB/lBC)) #degree\n",
    "#Results\n",
    "print('The angle which the force should make with the horizontal to keep the edge AB of the body vertical %f degree'%alpha) #here alpha=theta"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.9 Equilibrium of a body subjected to three forces"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The axial force in the bar AC(by aw of concurrent forces) is 781.024968 N\n",
      "The axial force in the bar BC(by aw of concurrent forces) is 640.312424 N\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "F=1000 #N\n",
    "lAB=0.5 #m\n",
    "lDC=0.25 #m #length of the perpendicular drawn from point C to AB\n",
    "#Calculations\n",
    "lAC=math.sqrt((0.3)**2+(0.25)**2) #m\n",
    "lBC=math.sqrt((0.20)**2+(0.25)**2) #m\n",
    "Sac=(lAC*F)/(lAB) #N #by law of concurrent forces\n",
    "Sbc=(lBC*F)/(lAB) #N #by law of concurrent forces\n",
    "#Results\n",
    "print('The axial force in the bar AC(by aw of concurrent forces) is %f N'%Sac)\n",
    "print('The axial force in the bar BC(by aw of concurrent forces) is %f N'%Sbc)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.10 Equilibrium of a body subjected to three forces"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The force F1 is 439.692621 N\n",
      "The force F2 is 326.351822 N\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "F3=500 #N\n",
    "alpha=60 #degree #angle made by F3 with F2\n",
    "beta=40 #degree #angle made by F1 with F3\n",
    "theta=80 #degree #angle made by F1 with F2\n",
    "#Calculations\n",
    "# Solving by using law of sines\n",
    "F1=(F3*math.sin(alpha*math.pi/180)/math.sin(theta*math.pi/180)) #N #by law of sines\n",
    "F2=(F3*math.sin(beta*math.pi/180)/math.sin(theta*math.pi/180)) #N #by law of sines\n",
    "#Resuts\n",
    "print('The force F1 is %f N'%F1)\n",
    "print('The force F2 is %f N'%F2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.11 Reaction at the hinge"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The X component of reaction at A is 4330.127019 N\n",
      "The Y component of reaction at A is 1249.674658 N\n",
      "The reaction at support A is 4506.848871 N\n",
      "The reaction at support B is 1250.325342 N\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "P=5000 #N\n",
    "lAB=5 #m\n",
    "lOB=1.443 # m\n",
    "alpha=30 #degree #angle made by force P with the beam\n",
    "#Calculations\n",
    "theta=math.degrees(math.atan(lOB/lAB)) # degree # eq'n 1\n",
    "Xa=(P*math.cos(alpha*math.pi/180)) #N #using eq'n 4\n",
    "Ya=Xa*math.tan(theta*math.pi/180) #N # from eq'n 3 & 4\n",
    "Rb=P*math.sin(alpha*math.pi/180)-Ya # N  from eq'n 5# substuting value of Ya in eq'n 5\n",
    "Ra=math.sqrt((Xa**2)+(Ya**2)) #N\n",
    "#Results\n",
    "print('The X component of reaction at A is %f N'%Xa)\n",
    "print('The Y component of reaction at A is %f N'%Ya)\n",
    "print('The reaction at support A is %f N'%Ra)\n",
    "print('The reaction at support B is %f N'%Rb)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.12 Reaction at the hinge"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The reaction at support A is 1250.000000  N\n",
      "The reaction at support B is 750.000000 N\n",
      "The angle that Rc makes with horizontal 53.130102 degree\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "W=1000 #N\n",
    "OD=0.4 #m\n",
    "AD=0.3 #m\n",
    "AO=0.5 #m #AO=sqrt((0.4)**2+(0.3)**2)\n",
    "#Calculations\n",
    "Ra=W*AO/OD #N # The answer of Ra in the textbook is incorrect\n",
    "Rc=W*AD/OD #N\n",
    "alpha=math.degrees(math.atan(OD/AD)) #degree\n",
    "#Results\n",
    "print('The reaction at support A is %f  N'%Ra)\n",
    "print('The reaction at support B is %f N'%Rc)\n",
    "print('The angle that Rc makes with horizontal %f degree'%alpha)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.13 Reaction at the hinge"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tension in portion AB is 4328.394968 N\n",
      "Tension in portion BC is 2499.000000 N\n",
      "Tension in portion CD is 2499.000000 N\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "W=2500 #N #This load acts at point B and C.\n",
    "alpha=30 #degree # angle made by T1 with +ve y-axis & T2 with +ve x-axis\n",
    "#Calculations\n",
    "T2=W-(((math.cos(alpha*math.pi/180))**2/(math.sin(alpha*math.pi/180)))-(math.sin(alpha*math.pi/180))) # N # substuting eq'n 1 in 2\n",
    "T1=(T2*math.cos(30*math.pi/180))/(math.sin(30*math.pi/180)) #N # using eq'n 1\n",
    "T3=T2 #N # By equilibrium eq'n at point C(sumFx=0)\n",
    "#Results\n",
    "print('Tension in portion AB is %f N'%T1)\n",
    "print('Tension in portion BC is %f N'%T2)\n",
    "print('Tension in portion CD is %f N'%T3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.15 Equilibrium of a body"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The force P so that the wheel is just to roll over the block is 577.350269 N\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "d=0.6 #m #diameter of the wheel\n",
    "r=0.3 #m #radius of the wheel\n",
    "W=1000 #N #weight of the wheel\n",
    "h=0.15 #m #height of rectangular block\n",
    "#Calculations\n",
    "theta=math.atan((math.sqrt(h))/(math.sqrt(d-h)))\n",
    "P=(W*math.tan(theta)) #N # dividing eq'n 1 & 2\n",
    "#Resuts\n",
    "print('The force P so that the wheel is just to roll over the block is %f N'%P)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.16 Equilibrium of a Body"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The axial force in the bar AB is 1306.562965 N\n",
      "The axial force in the bar OB is 1000.000000 N\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "Soa=1000 #N (tension)\n",
    "alpha=45 #degree #where alpha=(360/8)\n",
    "theta=67.5 #degree #angle made by bar AO with AB &AH\n",
    "#Calcultions\n",
    "Sab=Soa*(math.sin(theta*math.pi/180)/math.sin(alpha*math.pi/180)) # N # Using law of sines\n",
    "Sah=Sab #N\n",
    "Sob=(Sab*math.sin((180-2*(theta))*math.pi/180))/math.sin(theta*math.pi/180) #N\n",
    "#Results\n",
    "print('The axial force in the bar AB is %f N'%Sab) #Compression\n",
    "print('The axial force in the bar OB is %f N'%Sob) #Tension"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.17 Equilibrium of a body"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The reaction at A is 453.153894 N\n",
      "The reaction at B is 211.309131 N\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "W=500 #N #weight of cylinder\n",
    "alpha=25 #degree #angle made by OA with horizontal\n",
    "beta=65 #degree #angle made by OB with horizontal\n",
    "theta=90 #degree # theta=(alpha+beta)\n",
    "#Calculations\n",
    "Ra=(W*math.sin(beta*math.pi/180))/math.sin(theta*math.pi/180) #N #from equilibrium eq'n\n",
    "Rb=(W*math.sin(alpha*math.pi/180))/math.sin(theta*math.pi/180) #N #from equilibrium eqn's\n",
    "#Results\n",
    "print('The reaction at A is %f N'%Ra)\n",
    "print('The reaction at B is %f N'%Rb)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.18 Equilibrium of a body"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The reaction at point P is 268.383687 N\n",
      "The reaction at point L is 309.902788 N\n",
      "The reaction at point N is 1245.048606 N\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "Wa=1000 #N #weight of sphere A\n",
    "Wb=400 #N #weight of sphere B\n",
    "Ra=0.09 #m #radius of sphere A\n",
    "Rb=0.05 #m #radius of sphere B\n",
    "theta=33.86 #degree #angle made by Rq with Wb\n",
    "alpha=60 #degree #angle made by Rl with horizontal\n",
    "#Calculations\n",
    "Rq=Wb/math.cos(theta*math.pi/180) #N #using sum Fy=0 for sphere B\n",
    "Rp=Rq*math.sin(theta*math.pi/180) #N #using sum Fx=0 for sphere B\n",
    "Rl=(Rq*math.sin(theta*math.pi/180))/math.sin(alpha*math.pi/180) #N #using sum Fx=0 for sphere A\n",
    "Rn=((Wa)+(Rq*math.cos(theta*math.pi/180))-(Rl*math.cos(alpha*math.pi/180))) #N\n",
    "#Results\n",
    "print('The reaction at point P is %f N'%Rp)\n",
    "print('The reaction at point L is %f N'%Rl)\n",
    "print('The reaction at point N is %f N'%Rn)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.19 Equilibrium of a body"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The tension in the string is 66.143783 N\n",
      "The angle wich the string makes with the horizontal when the system is in equilibrium is 10.893395 N\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "P=50 #N\n",
    "Q=100 #N\n",
    "alpha=30 #degree #angle made by Rq with +ve Y-axis\n",
    "#Calculations\n",
    "theta=math.degrees(math.atan((P*1/math.tan(alpha*math.pi/180)-Q*math.tan(alpha*math.pi/180))/(P+Q))) #degree\n",
    "T=Q/(math.cos(theta*math.pi/180)*1/math.tan(alpha*math.pi/180)-math.sin(theta*math.pi/180)) #N\n",
    "#Results\n",
    "print('The tension in the string is %f N'%T)\n",
    "print('The angle wich the string makes with the horizontal when the system is in equilibrium is %f N'%theta)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.20 Equilibrium of a body"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The reaction between the cylinder A and the wall of the channel is 784.797079 N\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "theta1=50.5 #degree #is the angle made between BC & and BE\n",
    "theta2=36.87 #degree #is te angle ade between BA &BE \n",
    "g=9.81 #m/s**2\n",
    "Wa=15*g #N\n",
    "Wb=40*g #N\n",
    "Wc=20*g #N\n",
    "#Calculations\n",
    "R2=Wc/(math.sin(theta1*math.pi/180)) #N #from F.B.D of cylinder C(sum Fy=0)\n",
    "R4=(Wb+R2*math.sin(theta1*math.pi/180))/math.sin(theta2*math.pi/180) #N #from F.B.D of cylinder B(sum Fy=0)\n",
    "R6=R4*math.cos(theta2*math.pi/180) #N #from F.B.D of cylinder A(sum Fx=0)\n",
    "#Results\n",
    "print('The reaction between the cylinder A and the wall of the channel is %f N'%R6)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.21 Equilibrium of a body"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The reaction at D due to force of 1000 N acting at B is 500.000000 N\n"
     ]
    }
   ],
   "source": [
    "#Initilazation of variables\n",
    "F=1000 #N\n",
    "theta=30 #degree #angle made by the force with the beam AB\n",
    "Lab=3 #m\n",
    "Lae=2 #m\n",
    "Lce=1 #m\n",
    "#Calculations\n",
    "Re=(F*Lab*math.sin(theta*math.pi/180))/Lae #N #Taking moment at A\n",
    "Rd=(Re*Lce)/(Lab*math.sin(theta*math.pi/180)) #N #Taking moment about C\n",
    "#Results\n",
    "print('The reaction at D due to force of 1000 N acting at B is %f N'%Rd)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example 2.23 Equilibrium of a body"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The least force required to just turn the wheel over the block is 866.025404 N\n",
      "The angle wich should be made by Pmini with AC is 90.000000 degree\n"
     ]
    }
   ],
   "source": [
    "#Initilization of variables\n",
    "W=1000 #N\n",
    "r=0.30 #m #radius of the wheel\n",
    "h=0.15 #m #height of the obstacle\n",
    "#Calculations\n",
    "theta=math.degrees(math.asin(1)) #degree #P is mini when sin(theta)=1 from eq'n of P\n",
    "Pmini=(W*math.sqrt((2*r*h)-(h**2)))/(r*math.sin(theta*math.pi/180)) #N\n",
    "#Results\n",
    "print('The least force required to just turn the wheel over the block is %f N'%Pmini)\n",
    "print('The angle wich should be made by Pmini with AC is %f degree'%theta)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}