1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 15 Curvilinear motion of a particle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.2 Components of Acceleration"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The normal component of acceleration is 2.000000 m/s**2\n",
"The tangential component of acceleration is 0.000000 m/s**2\n",
"The normal component of deceleration is 2.000000 m/s**2\n",
"The tangential component of deceleration is 1.000000 m/s**2\n"
]
}
],
"source": [
"# Initialization of variables\n",
"r=200 # m # radius of the curved road\n",
"v_1=72*(1000/3600) # m/s # initial speed of the car\n",
"v_2=36*(1000/3600) # m/s # speed of the car after 10 seconds\n",
"t=10 # seconds\n",
"# Calculations\n",
"A_n=v_1**2/r # m/s**2 # normal component of acceleration\n",
"A_t=0 # since dv/dt=0 # tangential component of acceeration\n",
"delv=v_1-v_2\n",
"delt=t-0\n",
"a_t=delv/delt # m/s**2 # tangential component of deceleration after the brakes are applied\n",
"a_n=v_1**2/r # m/s**2 # normal component of deceleration after the brakes are applied\n",
"# Results\n",
"print('The normal component of acceleration is %f m/s**2'%A_n)\n",
"print('The tangential component of acceleration is %f m/s**2'%A_t)\n",
"print('The normal component of deceleration is %f m/s**2'%a_n)\n",
"print('The tangential component of deceleration is %f m/s**2'%a_t)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.3 Components of Acceleration"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The distance traveled by the car is 93.750000 m\n",
"The time for which the car travels is 17.677670 seconds\n"
]
}
],
"source": [
"import math\n",
"#Initialization of variables\n",
"r=250 # m # radius of the curved road\n",
"a_t=0.6 # m/s**2 # tangential acceleration\n",
"a=0.75 # m/s**2 # total acceleration attained by the car\n",
"# Calculations\n",
"a_n=math.sqrt(a**2-a_t**2) # m/s**2\n",
"v=math.sqrt(a_n*r) # m/s\n",
"# Using v=u+a*t\n",
"u=0\n",
"t=v/a_t # seconds\n",
"# Now using v**2-u**2=2*a*s\n",
"s=v**2/(2*a_t) # m\n",
"# Results\n",
"print('The distance traveled by the car is %f m'%s)\n",
"print('The time for which the car travels is %f seconds'%t)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.5 Motion of a particle on a curved frictionless path"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The component of velocity in X direction (v_x) is 6.816388 m/s\n",
"The component of velocity in Y direction (v_y) is 7.316889 m/s\n",
"The component of acceleration in X direction (a_x) is 0.365844 m/s**2\n",
"The component of acceleration in Y direction (a_y) is 0.340959 m/s**2\n",
"The total acceleration is 0.500095 m/s**2 and its direction is 42.983499 degrees\n",
"The normal acceleration is 0.500000 m/s**2 and tangential acceleration is 0.000000 m/s**2\n"
]
}
],
"source": [
"# Initialization of variables\n",
"v=10 # m/s # speed of the car\n",
"r=200 # m # radius of the road\n",
"t=15 # seconds\n",
"# Calculations\n",
"omega=(v/r) # radian/seconds # angular velocity of the car\n",
"# Velocity in x & y direction is given by eq'n\n",
"v_x=omega*r*(math.sin((omega*(180/math.pi)*t)*math.pi/180)) # m/s # value of v_x is -ve but we consider it to be +ve for calculations\n",
"v_y=omega*r*(math.cos((omega*(180/math.pi)*t)*math.pi/180)) # m/s\n",
"# Acceleration in x & y direction is given by\n",
"a_x=omega**2*r*(math.cos((omega*(180/math.pi)*t)*math.pi/180)) # m/s**2 # value of a_x is -ve but we consider it to be +ve for calculations\n",
"a_y=omega**2*r*(math.sin((omega*(180/3.14)*t)*math.pi/180)) # m/s**2 # value of a_y is -ve but we consider it to be +ve for calculations\n",
"a=math.sqrt(a_x**2+a_y**2) # m/s**2 # total acc\n",
"phi=math.degrees(math.atan(a_y/a_x)) # degrees # direction of acceleration\n",
"# Components in tangential and normal directions\n",
"# Velocity\n",
"v_n=0 # m/s\n",
"v_t=v # m/s\n",
"# Acceleration\n",
"a_n=v**2/r # m/s**2 # normal acc\n",
"a_t=0 # tangential acc\n",
"# angular position of the car after 15 sec \n",
"theta=omega*(180/math.pi)*t # degrees\n",
"# Results\n",
"print('The component of velocity in X direction (v_x) is %f m/s'%v_x)\n",
"print('The component of velocity in Y direction (v_y) is %f m/s'%v_y)\n",
"print('The component of acceleration in X direction (a_x) is %f m/s**2'%a_x)\n",
"print('The component of acceleration in Y direction (a_y) is %f m/s**2'%a_y)\n",
"print('The total acceleration is %f m/s**2 and its direction is %f degrees'%(a,phi))\n",
"print('The normal acceleration is %f m/s**2 and tangential acceleration is %f m/s**2'%(a_n,a_t))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.6 Motion of a particle on a curved frictionless path"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The velocity of the collar is 1.117599 m/s\n",
"The accelaration of the collar is 6.674415 m/s**2\n",
"The acceleration of the collar relative to the rod is -2.900000 m/s**2\n"
]
}
],
"source": [
"# Initialization of variables\n",
"t=1 # seconds\n",
"# Calculations\n",
"# From the equations of r and theta given we find 1st & 2nd derative and substitute t=1sec Here we consider the 1st derative as r_1 & theta_1 and so on...\n",
"r=(1.25*t**2)-(0.9*t**3) # m\n",
"r_1=(1.25*(2*t))-(0.9*(3*t**2)) # m/s\n",
"r_2=2.5-(0.9*3*(2*t)) # m/s**2\n",
"theta=(math.pi/2)*(4*t-3*t**2) # radian\n",
"theta_1=(math.pi/2)*(4-(6*t)) # rad/second\n",
"theta_2=(math.pi/2)*(0-(6*t)) # rad/second**2\n",
"# Velocity of collar P\n",
"v_r=r_1 # m/s\n",
"v_theta=r*theta_1 # m/s\n",
"v=math.sqrt(v_r**2+v_theta**2) # m/s\n",
"alpha=math.degrees(math.atan(v_theta/v_r)) # degree\n",
"# Acceleration of the collar P\n",
"a_r=r_2-(r*theta_1**2) # m/s**2\n",
"a_theta=(r*theta_2)+(2*r_1*theta_1) # m/s**2\n",
"a=math.sqrt(a_r**2+a_theta**2) # m/s**2\n",
"beta=math.degrees(math.atan(a_theta/a_r)) # degree\n",
"# Acceleration of collar P relative to the rod. Let it be a_relative\n",
"a_relative=r_2 # m/s**2 # towards O\n",
"# Calculations\n",
"print('The velocity of the collar is %f m/s'%v)\n",
"print('The accelaration of the collar is %f m/s**2'%a)\n",
"print('The acceleration of the collar relative to the rod is %f m/s**2'%a_relative)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.7 Components of motion"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The velocity and the acceleration of the partice at t=0 s is 10.000000 cm/s & 125.663706 cm/s**2\n",
"The velocity and the acceleration of the partice at t=0.3 s is 21.337895 cm/s & 172.679692 cm/s**2\n"
]
}
],
"source": [
"#Initialization of variables\n",
"# Consider the eq'ns of motion from the book\n",
"# The notations have been changed for the derivatives of r & theta\n",
"# (1) At t=0 s\n",
"theta_0=0\n",
"theta_1=2*math.pi # rad/s\n",
"theta_2=0\n",
"r_0=0\n",
"r_1=10 # cm/s\n",
"r_2=0\n",
"# At t=0.3 s\n",
"t=0.3 # sec\n",
"theta=2*math.pi*t # rad\n",
"theta1=2*math.pi # rad/s\n",
"theta2=0\n",
"r=10*t # cm\n",
"r1=10 # cm/s\n",
"r2=0\n",
"# (i) \n",
"#Velocity\n",
"v_r=r_1 # cm/s\n",
"v_theta=r_0*theta_1\n",
"v=math.sqrt(v_r**2+v_theta**2) # cm/s\n",
"# Acceleration\n",
"a_r=r_2-(r_0*theta_1**2) # cm/s**2\n",
"a_theta=(r_0*theta_2)+(2*r_1*theta_1) # cm/s**2\n",
"a=math.sqrt(a_r**2+a_theta**2) # cm/s**2\n",
"# (ii)\n",
"# Velocity\n",
"V_R=r1 # cm/s\n",
"V_theta=r*theta1 # cm/s\n",
"V=math.sqrt(V_R**2+V_theta**2) # cm/s\n",
"# Acceleration\n",
"A_r=r2-(r*theta1**2) # cm/s**2\n",
"A_theta=(r*theta2)+(2*r1*theta1) # cm/s**2\n",
"A=math.sqrt(A_r**2+A_theta**2) # cm/s**2\n",
"# Results\n",
"print('The velocity and the acceleration of the partice at t=0 s is %f cm/s & %f cm/s**2'%(v,a))\n",
"print('The velocity and the acceleration of the partice at t=0.3 s is %f cm/s & %f cm/s**2'%(V,A))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.9 Equations of dynamic equilibrium"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The tension in the wire before and after it is cut is respectively 0.394895 W & 0.766044 W\n"
]
}
],
"source": [
"# Calculations\n",
"# Tension in the wire before it is cut\n",
"T_ab=1/((2.747*0.643)+(0.766)) # From eqn's 1 & 2..Here T_ab is multiplied with W (i.e weight of small ball) \n",
"T_AB=math.cos(40*math.pi/180) # Tension in the wire after the wire is cut. Again T_AB is multiplied with W.\n",
"# Results\n",
"print('The tension in the wire before and after it is cut is respectively %f W & %f W'%(T_ab,T_AB))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.10 Equations of dynamic equilibrium"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The coefficient of friction of block B is 0.565897\n"
]
}
],
"source": [
"#Initialization of variables\n",
"mu_a=0.40 # coefficient of friction under block A\n",
"n=40 # r.p.m # speed of rotation of frame\n",
"W_A=120 # N # weight of block A\n",
"W_B=80 # N # weight of block B\n",
"r_1=1.2 # m # distance between W_A & axis of rotation\n",
"r_2=1.6 # m # distance between W_B & axis of rotation\n",
"g=9.81 # m/s**2\n",
"# Calculations\n",
"# Consider the F.B.D of block A\n",
"N=W_A # N # sum F_y=0\n",
"omega=(2*math.pi*n)/60 # rad/sec\n",
"a_n=omega**2*r_1 # m/s**2\n",
"T=((W_A/g)*a_n)-(mu_a*W_A) # N\n",
"# Now consider the F.B.D of block B\n",
"A_n=omega**2*r_2 # m/s**2\n",
"N_1=(W_B/g)*A_n # N # sum F_x=0\n",
"mu=(T-W_B)/N_1 # sum F_x=0\n",
"# Results\n",
"print('The coefficient of friction of block B is %f'%mu)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.12 Motion of particle on curved frictionless path"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The maximum lateral thrust is 500.000000 N\n"
]
}
],
"source": [
"#Initialization of variables\n",
"W=10000 # N # Weight of the locomotive\n",
"# Calculations\n",
"# Consider the various derivations given in the textbook\n",
"R_max=W/20 # N # eq'n for max reaction\n",
"# The position of occurence of maximum thrust cannot be defined here. Refer textbook for the answer\n",
"# Results\n",
"print('The maximum lateral thrust is %f N'%R_max)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.13 Motion of a particle on curved frictionless path"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The value of the reaction is 31.932454 N\n"
]
}
],
"source": [
"# Initialization of variables\n",
"W=10 # N # Weight of the ball\n",
"# Calculations\n",
"# consider the eq'n derived to find the reaction, given as\n",
"R=W*(1+((2*math.pi**2)/9)) # N \n",
"# Results\n",
"print('The value of the reaction is %f N'%R)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.15 Motion of a particle in a curved frictionless path"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The speed of rotation is 101.634363 r.p.m\n"
]
}
],
"source": [
"#Initialization of variables\n",
"P=50 # N # Weight of ball P\n",
"Q=50 # N # Weight of ball Q\n",
"R=100 # N # Weight of the governing device\n",
"l=0.3 # m # length of each side\n",
"theta=30 # degree\n",
"g=9.81 # m/s**2 # acc due to gravity\n",
"# Calculations\n",
"# Consider the respective F.B.D\n",
"r=l*math.sin(theta*math.pi/180) # m # Radius of circe\n",
"# On solving eqn's 1,2 &3 we get the value of v as,\n",
"v=math.sqrt(((Q+R)*g*r)/((math.sqrt(3))*Q)) # m/s \n",
"# But the eq'n v=omega*r we get the value of N as,\n",
"N=(60*v)/(2*math.pi*r) # r.p.m \n",
"# Results\n",
"print('The speed of rotation is %f r.p.m'%N)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.16 Motion of a particle in a curved frictionless path"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The speed of the fly-balls is 101.634363 r.p.m\n"
]
}
],
"source": [
"# Initilization of variables\n",
"Q=20 # N # Weight of the governor device\n",
"W=10 # N # Weight of the fly balls\n",
"theta=30 # degree # angle between the vertical shaft and the axis AB\n",
"l=0.2 # m # length of the shaft\n",
"g=9.81 # m/s**2 # acc due to gravity\n",
"# Calculations\n",
"# Consider the respective F.B.D\n",
"# Radius of the circle is given as,\n",
"r=Q*math.sin(theta*math.pi/180)*(10**-2) # m \n",
"# Solving eq'n 1 & 2 for v. The eq'n for v is given as,\n",
"v=math.sqrt(((W*l*0.5)+(0.05*Q))/((W*0.2*math.sqrt(3))/(2*g*r))) # m/s\n",
"# But, v=r*omega=2*pi*N*r/60. From this eq'n we get N as,\n",
"N=(v*60)/(2*math.pi*r) # r.p.m.\n",
"# Results\n",
"print('The speed of the fly-balls is %f r.p.m'%N)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.18 Motion of vehicles on leveled and banked roads"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The maximum speed with which the vehicle can travel is 8.577587 m/s\n",
"The angle made with the vertical is 8.530766 degree\n"
]
}
],
"source": [
"#Initialization of variables\n",
"r=50 # m # radius of the road\n",
"mu=0.15 # coefficient of friction between the wheels and the road\n",
"g=9.81 # m/s**2 # acc due to gravity\n",
"# Calculations\n",
"# The eq'n fo max speed of the vehicle without skidding is \n",
"v=math.sqrt(mu*g*r) # m/s\n",
"# The angle theta made with the vertical while negotiating the corner is \n",
"theta=math.degrees(math.atan(v**2/(g*r))) # degree\n",
"# Results\n",
"print('The maximum speed with which the vehicle can travel is %f m/s'%v)\n",
"print('The angle made with the vertical is %f degree'%theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.19 Motion of vehicles on leveled and banked roads"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The angle of banking of the track is 17.464605 degree\n"
]
}
],
"source": [
"#Initialization of variables\n",
"v=100*(1000/3600) # m/s # or 100 km/hr\n",
"r=250 # m # radius of the road\n",
"g=9.81 # m/s**2 # acc due to gravity\n",
"# Calculations\n",
"# The angle of banking is given by eq'n,\n",
"theta=math.degrees(math.atan((v**2)/(g*r))) # degree \n",
"# Results\n",
"print('The angle of banking of the track is %f degree'%theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.20 Motion of vehicles on leveled and banked roads"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The reaction at Wheel A (R_A) is 4660.210669 N\n",
"The reaction at Wheel B (R_B) is 5339.789331 N\n",
"The maximum speed at which the vehicle can travel without the fear of overturning is is 27.124712 m/s\n"
]
}
],
"source": [
"#Initialization of variables\n",
"W=10000 # N # Weight of the car\n",
"r=100 # m # radius of the road\n",
"v=10 # m/s # speed of the car\n",
"h=1 # m # height of the C.G of the car above the ground\n",
"b=1.5 # m # distance between the wheels\n",
"g=9.81 # m/s**2 # acc due to gravity\n",
"# Calculations\n",
"# The reactions at the wheels are given by te eq'ns:\n",
"R_A=(W/2)*(1-((v**2*h)/(g*r*b))) # N # Reaction at A\n",
"R_B=(W/2)*(1+((v**2*h)/(g*r*b))) # N # Reaction at B\n",
"# The eq'n for max speed to avoid overturning on level ground is,\n",
"v_max=math.sqrt((g*r*(b/2))/(h)) # m/s\n",
"# Results\n",
"print('The reaction at Wheel A (R_A) is %f N'%R_A)\n",
"print('The reaction at Wheel B (R_B) is %f N'%R_B)\n",
"print('The maximum speed at which the vehicle can travel without the fear of overturning is is %f m/s'%v_max)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 15.21 Motion of vehicles on leveled and banked roads"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The speed of the cariage is 42.270586 km/hr\n",
"The tension in the chord is 1.009828 N\n"
]
}
],
"source": [
"#Initialization of variables\n",
"W=1 # N # Weight of the bob\n",
"theta=8 # degree # angle made by the bob with the vertical\n",
"r=100 # m # radius of the curve\n",
"g=9.81 # m/s**2 # acc due to gravity\n",
"# Calculations\n",
"# from eq'n 1 & 2 we get v as,\n",
"v=(math.sqrt(g*r*math.tan(theta*math.pi/180)))*(3600/1000) # km/hr \n",
"T=W/math.cos(theta*math.pi/180) # N # from eq'n 2\n",
"# Results\n",
"print('The speed of the cariage is %f km/hr'%v)\n",
"print('The tension in the chord is %f N'%T)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
},
"widgets": {
"state": {},
"version": "1.1.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|