1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 13 Principle of Virtual Work"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 13.1 Application of Principle of Virtual Work"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The value of force (i.e P) that can hold the system in equilibrium is 500 N\n"
]
}
],
"source": [
"# Initilization of variables\n",
"W=1000 # N # weight to be raised\n",
"# Calculations\n",
"# From the Principle of virtual work,\n",
"P=W/2 # N\n",
"# Results\n",
"print('The value of force (i.e P) that can hold the system in equilibrium is %d N'%P)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 13.7 Application of Principle of Virtual Work"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Horizontal component of reaction at A (X_A) is 333.333333 N\n",
"The Vertical component of reaction at A (Y_A) is 1333.333333 N\n",
"The Horizontal component of reaction at B (X_B) is 333.333333 N\n",
"The Vertical component of reaction at B (Y_B) is 666.666667 N\n"
]
}
],
"source": [
"import math\n",
"# Initilization of variables\n",
"P=1000 # N # Force acting at the hinge of the 1st square\n",
"Q=1000 # N # Force acting at the hinge of the 2nd square\n",
"# Calculations\n",
"# Chosing the co-ordinate system with originat A, we can write,\n",
"theta=45 # degree\n",
"# Forces that do work are P,Q & X_B. Applying the principle of virtual work & Simplyfying and solving for X_B,\n",
"X_B=((2*P)/6)*(math.cos(theta*math.pi/180)/math.sin(theta*math.pi/180)) # N \n",
"# Now give a virtual angular displacement to the whole frame about end A such that line AB turns by an angle delta_phi.\n",
"# The force doing work are P,Q&Y_B.Applying the principle of virtual work & Simplyfying this eq'n and solving for Y_B,\n",
"Y_B=((3*Q)+P)/6 # N\n",
"# Simply by removing the support at A & replacing it by the reactions X_A & Y_A we can obtain,\n",
"X_A=X_B # N\n",
"Y_A=P+Q-Y_B # N\n",
"# Results\n",
"print('The Horizontal component of reaction at A (X_A) is %f N'%X_A)\n",
"print('The Vertical component of reaction at A (Y_A) is %f N'%Y_A)\n",
"print('The Horizontal component of reaction at B (X_B) is %f N'%X_B)\n",
"print('The Vertical component of reaction at B (Y_B) is %f N'%Y_B)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
},
"widgets": {
"state": {},
"version": "1.1.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|