1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
{
"metadata": {
"name": "CHAPTER 3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3:Steady-State Conduction in Multiple Dimensions"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.1 Page No.132"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of the heat-flow rate from one tube \n",
"# specifications of 1 standard type K from table F2\n",
"\n",
"#iven\n",
"OD=0.02858 # outer diameter in m\n",
"# from figure 3.11\n",
"M=8.0 # total number of heat-flow lanes\n",
"N=6.0 # number of squares per lane\n",
"S_L=M/N # conduction shape factor\n",
"k=0.128 # thermal conductivity in W/(m.K) for concrete from appendix table B3\n",
"T1=85 # temperature of tube surface\n",
"T2=0 # temperature of ground beneath the slab\n",
"\n",
"#Calculation\n",
"q_half=k*S_L*(T1-T2)\n",
"q=2*q_half\n",
"\n",
"#Result\n",
"print\"The total heat flow per tube is\",round(q,0),\" W/m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total heat flow per tube is 29.0 W/m\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.2 Page No.134"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of the heat transferred from the buried pipe per unit length\n",
"# shape factor number 8 is selected from table 3.1\n",
"# specifications of 10 nominal, schedule 80 pipe from table F1\n",
"\n",
"#Given\n",
"import math\n",
"OD=10.74/12 # diameter in ft\n",
"R=OD/2\n",
"T1=140.0\n",
"T2=65.0\n",
"k=0.072 # thermal conductivity in BTU/(hr-ft. degree R)\n",
"d=18.0/12.0 # distance from centre-line\n",
"S_L=(2*math.pi)/(math.acosh(d/R))\n",
"q_L=k*S_L*(T1-T2)\n",
"print\"The heat transferred from the buried pipe per unit length is \",round(q_L,2),\"BTU/(hr.ft)\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat transferred from the buried pipe per unit length is 18.05 BTU/(hr.ft)\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.3 Page No.135"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of the heat lost through the walls, using the shape-factor method. \n",
"#(b) Repeat the calculations but neglect the effects of the corners that is, . \n",
"\n",
"#Given\n",
"k = 1.07 # thermal conductivity of silica brick from appendix table B3 in W/(m.K)\n",
"S1_A=0.138*0.138/0.006\n",
"nA=2\n",
"\n",
"# Calculation of total shape factor\n",
"# From figure 3.12, for component A\n",
"St_A=nA*S1_A # Total shape factor of component A\n",
"\n",
"# For component B\n",
"S1_B=0.138*0.188/0.006\n",
"nB=4\n",
"St_B=nB*S1_B # Total shape factor of component B\n",
"\n",
"# For component C\n",
"S3_C=0.15*0.006\n",
"nC=8\n",
"St_C=nC*S3_C # Total shape factor of component C\n",
"\n",
"# For component D\n",
"S2_D=0.54*0.188\n",
"nD=4\n",
"St_D=nD*S2_D # Total shape factor of component D\n",
"\n",
"# For component E\n",
"S2_E=0.138*0.54\n",
"nE=8\n",
"St_E=nE*S2_E # Total shape factor of component E\n",
"\n",
"S=St_A+St_B+St_C+St_D+St_E\n",
"T1=550\n",
"T2=30\n",
"q=k*S*(T1-T2)\n",
"S=St_A+St_B\n",
"q_1=k*S*(T1-T2)\n",
"Error=(q-q_1)/q\n",
"\n",
"#result\n",
"print\"(a)The heat transferred through the walls of the furnace is \",round(q/1000,1),\"kw\"\n",
"# Neglecting the effects of the edges and corners, the shape factor for all walls is found as \n",
"print\"(b The heat transferred is\",q_1/1000,1,\"kw\"\n",
"print\" The error introduced by neglecting heat flow through the edges and corners is \",round(Error*100,1),\" percent\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The heat transferred through the walls of the furnace is 13.7 kw\n",
"(b The heat transferred is 13.1555216 1 kw\n",
" The error introduced by neglecting heat flow through the edges and corners is 4.1 percent\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.4 Page No. 142"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of the conduction shape factor for the underground portion of the configuration\n",
"# specifications of 4 nominal, schedule 40 pipe from table F1\n",
"\n",
"#Given\n",
"OD=4.5/12.0 # diameter in ft\n",
"R=OD/2.0\n",
"\n",
"# For pipe A\n",
"#calculation\n",
"import math\n",
"L_A=4.5 # length in ft\n",
"# shape factor number 9 is selected from table 3.1\n",
"S_A=(2*math.pi*L_A)/(math.log(2*(L_A)/R))\n",
"# For pipe B\n",
"L_B=18 # length in ft\n",
"# shape factor number 9 is selected from table 3.1\n",
"S_B=(2*math.pi*L_B)/(math.acosh(L_A/R))\n",
"S=2*S_A+S_B\n",
"\n",
"#Result\n",
"print\"The total conduction shape factor for the system is\",round(S,1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total conduction shape factor for the system is 43.8\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3.5 Page No. 151"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#(a)plot graph the temperature distribution existing within the rod. \n",
"#(b) Use the numerical formulation of this section to obtain the temperature distribution.\n",
"#(c) Compare the two models to determine how well the numerical results approximate the exact results\n",
"\n",
"#Given\n",
"h=1.1 # convective coefficient in BTU/(hr.ft^2. degree R)\n",
"Tw=200.0\n",
"T_inf=68.0 # ambient temperature\n",
"k=0.47 # thermal conductivity in BTU/(hr.ft.degree R) from table B3\n",
"D=0.25/12 # diameter in ft\n",
"\n",
"#Calculation\n",
"A=math.pi*D**(2)/4.0 # cross sectional area in ft^2\n",
"P=math.pi*D # perimeter in ft\n",
"L=6/12.0 # length in ft\n",
"mL=L*((h*P)/(k*A))**(0.5)\n",
"dz=1.0\n",
"L=4.0\n",
"de=dz/L\n",
"K=2+(mL*de)**2\n",
"\n",
"#Tempature can be calculated as\n",
"T4=T_inf+(Tw-T_inf)*(2/(K**4-4*K**2+2))\n",
"T3=T_inf+(Tw-T_inf)*(K/(K**4-4*K**2+2))\n",
"T2=T_inf+(Tw-T_inf)*((K**2-1)/(K**4-4*K**2+2))\n",
"T1=T_inf+(Tw-T_inf)*((K**3-3*K)/(K**4-4*K**2+2))\n",
"\n",
"#result\n",
"print\"The temprature distribution is T4=\",round(T4,2),\"F\"\n",
"print\"The temprature distribution is T3=\",round(T3,2),\"F\"\n",
"print\"The temprature distribution is T2=\",round(T2,2),\"F\"\n",
"print\"The temprature distribution is T1=\",round(T1,2),\"F\"\n",
"\n",
"#(b)plot\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"T=[200.0,77.33,68.66,68.05,68]\n",
"z=[0,1.5,3,4.5,6]\n",
"xlim(0,6)\n",
"ylim(50,200)\n",
"plt.ylabel('T (C)')\n",
"plt.xlabel('z (in)')\n",
"plt.annotate('Numeric approximation using 4 nodes', xy=(2,82), xytext=(0,30),\n",
" arrowprops=dict(facecolor='black', shrink=0.05),\n",
" )\n",
"a=plot(z,T)\n",
"\n",
"T1=[200.0,82.81,69.66,68.19,68.04]\n",
"plt.ylabel('T1 (F)')\n",
"plt.xlabel('z (in)')\n",
"plt.annotate('exact solution', xy=(1.5,80), xytext=(0,60),\n",
" arrowprops=dict(facecolor='black', shrink=0.05),\n",
" )\n",
"a=plot(z,T1)\n",
"show(a)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The temprature distribution is T4= 68.04 F\n",
"The temprature distribution is T3= 68.19 F\n",
"The temprature distribution is T2= 69.68 F\n",
"The temprature distribution is T1= 82.82 F\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAESCAYAAAD9gqKNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclOX+//HXsKPgggskoKiIgGyjAi5QkFtlLqmZuC/p\nOVmWS6Jp52ibWlodc2k5pZnx+6odKy3L1BR3BZXURAVFZFFIXFBM2eb+/TE5OQJuMNwMfJ49eHTf\n99zLe4aaD9e9XJdGURQFIYQQNZ6F2gGEEEJUDVIQhBBCAFIQhBBC/EUKghBCCEAKghBCiL9IQRBC\nCAGYsCCkp6cTGRlJmzZt8PPz46OPPgLg0qVLdOvWDS8vL7p3786VK1cM28ydO5dWrVrh7e3Npk2b\nTBVNCCFEKTSmeg4hKyuLrKwsgoKCyMvLo127dnz//fcsX76chg0bEh0dzbvvvsvly5eZN28eiYmJ\nDB48mPj4eDIzM+natStJSUlYWEgjRgghKoPJvm1dXFwICgoCwMHBAR8fHzIzM1m/fj0jRowAYMSI\nEXz//fcArFu3jqioKKytrfHw8MDT05O4uDhTxRNCCHGHSvnzOzU1lYSEBEJDQ8nOzsbZ2RkAZ2dn\nsrOzATh37hxubm6Gbdzc3MjMzKyMeEIIIaiEgpCXl0f//v1ZuHAhjo6ORq9pNBo0Gk2Z297tNSGE\nEBXLypQ7LywspH///gwbNoy+ffsC+lZBVlYWLi4unD9/nsaNGwPg6upKenq6YduMjAxcXV1L7NOy\nbi10V2+YMrYQQlQ7LVu25NSpU3ddx2QtBEVRGDNmDL6+vkycONGwvHfv3qxYsQKAFStWGApF7969\nWbVqFQUFBZw5c4bk5GRCQkJK7Fd39Qbr9h1GUZRq+TNr1izVM8h7k/cn76/6/Zw+ffqe39smayHs\n3r2br7/+moCAALRaLaC/rXT69OkMHDiQL774Ag8PD9asWQOAr68vAwcOxNfXFysrK5YuXVrmKaPJ\n382hd+gqU0UXQogayWQFISwsDJ1OV+prW7ZsKXX5jBkzmDFjxj33naL8yp6TSXRq7VWujEIIIf5m\nljf5tyt+ifH/b57aMUwiIiJC7QgmU53fG8j7M3fV/f3dD5M9mGYqGo2GuKMXCY1pxe8TDuHbpJna\nkYQQosrTaDTc6+veLFsIwX5OtLr6PP/8ar7aUYQQotowy4IA8OFzk9l9NYaMK1lqRxFCiGrBbAvC\nU4864/zHEMZ/9aHaUYQQolow24IA8PaT0fyU/TkX/7ykdhQhhDB7Zl0QRj7TFIeMPkxevUjtKEII\nYfbMuiBYWEB0p+n83+nFXMu/pnYcIYQwa2ZdEACmjPTCMq0L//7hE7WjCCGEWTP7gmBrC//wmcEn\nhz/gRqF0eieEEA/L7AsCwOwXAihOC2bB1mVqRxFCCLNVLQpCvXrwrPNM5u95j8LiQrXjCCGEWaoW\nBQFg3oRQbmS04rN9MWpHEUIIs1RtCoK7O0RazWD2lrkU64rVjiOEEGan2hQEgAUvRpKb7cT/HV6r\ndhQhhDA71aogBARo8L88k9d+nnPPXv2EEEIYq1YFAWD+2J5c+AN+OLlB7ShCCGFWzHI8hLtFVhRo\n2XsNNo9+yPFX95Q5DKcQQtQk1XY8hLvRaGDO0P6kXbjMttRtascRQgizUe1aCABFRfDIk1/SrPdK\nDkz4tZKSCSFE1VUjWwgAVlbweu8hJGadYl/GPrXjCCGEWTBpQRg9ejTOzs74+/sblsXFxRESEoJW\nqyU4OJj4+HjDa3PnzqVVq1Z4e3uzadOmch37+dHWWO6NZsbPc8q1HyGEqClMWhBGjRrFxo0bjZZF\nR0fz1ltvkZCQwJtvvkl0dDQAiYmJrF69msTERDZu3Mj48ePR6XQPfezatWFC+Gj2pcdzJPtIud6H\nEELUBCYtCOHh4dSvX99o2SOPPEJubi4AV65cwdXVFYB169YRFRWFtbU1Hh4eeHp6EhcXV67jT3rJ\nHmXPZP69WVoJQghxL1aVfcB58+YRFhbGq6++ik6nY+/evQCcO3eODh06GNZzc3MjMzOzXMdq1AiG\ntP4n/3eqBUkXk/Bq4FWu/QkhRHVW6ReVx4wZw0cffURaWhoffvgho0ePLnPdiniGYPokR5S4l3hr\n27xy70sIIaqzSm8hxMXFsWXLFgAGDBjA888/D4Crqyvp6emG9TIyMgynk+40e/Zsw3RERAQRERFl\nHs/TE7rVmcC3ia14+8pZmtVrVv43IYQQVVxsbCyxsbEPtpFiYmfOnFH8/PwM81qtVomNjVUURVG2\nbNmitG/fXlEURTl27JgSGBio5OfnKykpKUqLFi0UnU5XYn8PE3n/fkVx7BetvPDDiw/5LoQQwrzd\nz3enSVsIUVFRbN++nZycHNzd3XnzzTf57LPPePHFF8nPz8fe3p7PPvsMAF9fXwYOHIivry9WVlYs\nXbq0wrqdCAmBNrmT+SrBh39HvI6Lg0uF7FcIIaqTavmkcmk2bICRa15i1NDavNftXRMkE0KIqut+\nvjtrTEHQ6cA7NI2svlpSJyfjZO9kgnRCCFE11diuK0pjYQEzXmyKY2YfFu1fpHYcIYSocmpMCwGg\noADctUkUDO1M2uQUHG0dKzidEEJUTdJCuIONDUwZ4UWdnC58cuATteMIIUSVUqNaCAC5udA0+Ai2\nz/fg7KQU7K3tKzCdEEJUTdJCKEXdujCuTwAOucEsS1imdhwhhKgyalwLASAjA3y776Pu88+R8sop\nrC2tKyidEEJUTdJCKIObG/QL6YBNnicxR2PUjiOEEFVCjWwhAPz+Ozw6YisNR77A8RcTsbSwrIB0\nQghRNUkL4S78/KCDSyTF15xYe3yt2nGEEEJ1NbYgAERP1XBz80zm7JxTIa0OIYQwZzW6IDz2GDyS\n15PcXNiQvEHtOEIIoaoaXRA0GpgWrcFm/wze2fmOtBKEEDVajS4IAP36QeGR/py7dJltqdvUjiOE\nEKqp8QXB0hJenWxJg+PTmbNzjtpxhBBCNTW+IACMHAnpPw0hMTuZ/Rn71Y4jhBCqkIIA1KoFL/7T\nmuaZ0byz8x214wghhCpq7INpd7pwAbx8b2AT3YLNw38hwDmgwo8hhBBqkQfTHkCjRjB4oD1trk6W\nawlCiBpJWgi3OX0aQsKuoZnUgj1jduPVwMskxxFCiMomLYQH1LIldAl3pL3uJebtmqd2HCGEqFQm\nLQijR4/G2dkZf39/o+WLFi3Cx8cHPz8/pk2bZlg+d+5cWrVqhbe3N5s2bTJltDJNnQpHP5/AupPr\nOHvlrCoZhBBCDSY9ZbRz504cHBwYPnw4R48eBWDbtm3MmTOHn376CWtray5cuECjRo1ITExk8ODB\nxMfHk5mZSdeuXUlKSsLCwrhmmfKU0S2RkeDQdxoerf5k0VOLTHosIYSoDKqfMgoPD6d+/fpGyz7+\n+GNee+01rK31g9I0atQIgHXr1hEVFYW1tTUeHh54enoSFxdnynhlmjoVTsdMJuZoDNl52apkEEKI\nylbp1xCSk5PZsWMHHTp0ICIiggMHDgBw7tw53NzcDOu5ubmRmZlZ2fEAePJJsPjTmbC6g/lg7weq\nZBBCiMpmVdkHLCoq4vLly+zbt4/4+HgGDhxISkpKqetqNJpSl8+ePdswHRERQURERIVm1Gj0rYTP\nv4nm80e1TAubhpO9U4UeQwghTCk2NpbY2NgH2qbSC4Kbmxv9+vUDIDg4GAsLC3JycnB1dSU9Pd2w\nXkZGBq6urqXu4/aCYCpRUTBzZlPC+vVh0f5FzIqYZfJjCiFERbnzj+U33njjnttU+imjvn37snXr\nVgCSkpIoKCigYcOG9O7dm1WrVlFQUMCZM2dITk4mJCSksuMZ2NjAxIlQvH06i+MXcy3/mmpZhBCi\nMpi0IERFRdGpUyeSkpJwd3dn+fLljB49mpSUFPz9/YmKiuKrr74CwNfXl4EDB+Lr68uTTz7J0qVL\nyzxlVFnGjYO9P3rRoXEXPjnwiapZhBDC1ORJ5XuIjobMoiNsde1Byssp2FvbV9qxhRCioqh+22l1\n8Mor8POXAQQ2DGb5b8vVjiOEECYjLYT7MGoU2LTYxy+Og0iekIy1pXWlHl8IIcpLWggV5NVXYd2S\nDjSv25KYozFqxxFCCJOQgnAf2rSB9u0h6NpM5u6aS7GuWO1IQghR4aQg3KepU+HHxZHUt3Ni7fG1\nascRQogKJwXhPj36KDjV19DFeiZzds6p9OsYQghhalIQ7tOt7ix+/aQnABuSN6icSAghKpYUhAfw\nzDOQc0FDv0YzeGfnO9JKEEJUK1IQHoClJUyZAge+6s/lG5eJTY1VO5IQQlQYeQ7hAd24AR4e8Mry\nL9ma8zVbhm9RLYsQQtwveQ7BBOzt4cUX4dS3Q0i+lMz+jP1qRxJCiAohLYSHkJMDrVrB1G+WsO/C\nL6yPWq9qHiGEuBdpIZhIw4YwZAhc+nU08efiOZJ9RO1IQghRbtJCeEgpKRASAhPXzOf3SwdZNWCV\n2pGEEKJM0kIwoRYtoEsXsEj4J7+e+ZWki0lqRxJCiHKRFkI5HDgA/frByC/fIOPaWZb1WaZ2JCGE\nKJW0EEysfXvw9IRH0iaw7uQ60nLT1I4khBAPTQpCOU2dCh9/4MQY7fPM3z1f7ThCCPHQpCCU0xNP\ngKKA9uYkYo7GkJ2XrXYkIYR4KFIQyulWp3ef/8eFwf6D+WDvB2pHEkKIh2LSgjB69GicnZ3x9/cv\n8dr777+PhYUFly5dMiybO3curVq1wtvbm02bNpkyWoUaNAiSkuDJOtF8nvA5l25cuvdGQghRxZi0\nIIwaNYqNGzeWWJ6ens7mzZtp1qyZYVliYiKrV68mMTGRjRs3Mn78eHQ6nSnjVRgbG5g4Eb5e0pQ+\nrfuwaP8itSMJIcQDM2lBCA8Pp379+iWWT548mffee89o2bp164iKisLa2hoPDw88PT2Ji4szZbwK\nNXYsbNoEQzymszh+Mdfyr6kdSQghHkilX0NYt24dbm5uBAQEGC0/d+4cbm5uhnk3NzcyMzMrO95D\nq1NHXxTWfeFFl+Zd+OTAJ2pHEkKIB2JVmQf7888/mTNnDps3bzYsu9uDEhqNpjJiVZiXX4Y2bWDd\nizMY9OMTTAidgJ2VndqxhBDivlRqQTh9+jSpqakEBgYCkJGRQbt27di/fz+urq6kp6cb1s3IyMDV\n1bXU/cyePdswHRERQUREhClj37cmTfSjqm1fE0B7z/YsS1jG+ODxascSQtRAsbGxxMbGPtA2Ju+6\nIjU1lV69enH06NESrzVv3pyDBw/i5OREYmIigwcPJi4ujszMTLp27cqpU6dKtBKqUtcVpUlMhMcf\nh9W79zHih0EkT0jG2tJa7VhCiBpO9a4roqKi6NSpE0lJSbi7u7N8+fISAW/x9fVl4MCB+Pr68uST\nT7J06VKzO2UE4OsLwcFwfHMHWjq1JOZojNqRhBDivkjndiawcyeMHg1Lf97KSxtfIHF8IpYWlmrH\nEkLUYKq3EGqqsDBo0AByf4vEyd6JtcfXqh1JCCHuSQqCCdzqzmLBAg0zwmYyZ+ecKt+qEUIIKQgm\n0rcvXLwIdbN7ArAheYPKiYQQ4u6kIJiIpSVMmQLz52uYET6Dd3a+I60EIUSVJgXBhEaMgPh48KE/\nl25cIjY1Vu1IQghRpvu6y+j69eukp6ej0Whwc3Ojdu3alZGtVOZwl9Ht3noLzpyB8AnLiTkaw5bh\nW9SOJISoge7nu7PMgnDt2jX++9//smrVKnJycnB2dkZRFLKzs2nQoAFDhgxh7NixODg4mCR8mYHN\nrCBcvKgfZvO3o4U8+j9P1gxYQ6hbqNqxhBA1TLkKQpcuXRg0aBC9e/fG2dnZ6LWsrCzWr1/P6tWr\n+fXXXysu8X0wt4IA+j6OatUC935L+OX0L6yPWq92JCFEDVOuglBVmWNBOHMG2reHxOQbBC1vwS9D\nfyHAOeDeGwohRAUp14NpixcvNkz//vvvFZeqBmreHLp3h6+X2zO5w2Tm7JyjdiQhhCihzBaCVqsl\nISGhxLTazLGFAHDoEPTpA78lXsP7kxbsHr0brwZeascSQtQQ0nVFFdK2LXh5wYbvHHkp+CXe3fWu\n2pGEEMJImeMh5Obm8u2336IoitE06CtNv379Ki1kdREdDa++CrH7J+C1uBWzcmfRtG5TtWMJIQRw\nl1NGI0eONHQ/rShKia6o7+zKurKY6ykjAEWBoCCYNw9irabxZ+GfLHpqkdqxhBA1gNxlVAWtXAnL\nl8P/W5+F7xJfjr94HGcH53tvKIQQ5VCuawhffvklRUVFZW5YUFCgWivBnA0aBKdOQcYJFwb7D+aD\nvR+oHUkIIYC7XEPIy8sjODgYb29vgoODcXFxQVEUsrKyOHDgACdOnGDs2LGVmbVasLaGiRNh/nyY\n/1k02k+1TAubhpO9k9rRhBA13F1PGSmKwu7du9m1axdpaWkANGvWjLCwMDp16qTKEJfmfsoI4No1\n/bMJcXHw9tHRNKvbjFkRs9SOJYSoxuQaQhX22mv6wvDyG0l0XtaZlJdTcLR1VDuWEKKakucQqrCX\nX4aYGHBSvOjSvAufHvxU7UhCiBpOWggqev55aNoU+v7jCE98/QQpr6RgZ2WndiwhRDWkegth9OjR\nODs74+/vb1g2depUfHx8CAwMpF+/fuTm5hpemzt3Lq1atcLb25tNmzaZMlqVMGUKLFkCno4BtG/S\nnmUJy9SOJISowR6qINzv7aajRo1i48aNRsu6d+/OsWPHOHz4MF5eXsydOxeAxMREVq9eTWJiIhs3\nbmT8+PHodLqHiWc2fHygQwdYsQJmhM/gvd3vUVhcqHYsIUQN9VAF4d///vd9rRceHk79+vWNlnXr\n1g0LC/1hQ0NDycjIAGDdunVERUVhbW2Nh4cHnp6exMXFPUw8szJ1Krz/PgQ/0oGWTi2JORqjdiQh\nRA1V5nMIt5/mudMff/xRIQdftmwZUVFRAJw7d44OHToYXnNzcyMzM7NCjlOVde4MjRrBd9/BzPCZ\nvLDhBYYFDMPSwlLtaEKIGqbMgvDHH3+wcePGEn/hA3Tq1KncB37nnXewsbFh8ODBZa6jxnMOlU2j\n0Xd6N3cu7NsXiZO9E2uPr2Vgm4FqRxNC1DBlFoSnn36avLw8tFptidcee+yxch30yy+/5KeffjIa\nftPV1ZX09HTDfEZGBq6urqVuP3v2bMN0REQEERER5cqjtt69Ydo02LlTw8zwmby+9XWe9X22RhRE\nIYRpxMbGEhsb+2AbKWUICgoq66UHcubMGcXPz88w//PPPyu+vr7KhQsXjNY7duyYEhgYqOTn5ysp\nKSlKixYtFJ1OV2J/d4ls1j79VFF69lQUnU6nBH4cqPx48ke1IwkhqpH7+e406W2nUVFRdOrUiZMn\nT+Lu7s6yZcuYMGECeXl5dOvWDa1Wy/jx4wHw9fVl4MCB+Pr68uSTT7J06dIa9Rfy8OFw4AAkJmqY\nET6Dd3a+U22etxBCmIcyH0xzc3Nj8uTJpX4paTQaJk+ebPJwpalOD6bd6e234fRp+PyLYnyX+vJJ\nz0+IbB6pdiwhRDVQrgfTiouLuXbtGnl5eSV+rl27VuFhBYwfD+vWQdZ5S6Z3ns47O99RO5IQogYp\ns4Wg1WpJSEio7Dz3VJ1bCACvvAK2tvDO3EI8F3myZsAaQt1C1Y4lhDBzqnddIR7cpEnwxRdw47o1\n0Z2ipZUghKg0ZRaELVu2VGYO8RcPD+jRAz77DEZrRxN/Lp4j2UfUjiWEqAGkt9MqKCEBevWClBRY\nGD+fg+cPsmrAKrVjCSHMmJwyMlNarb7ju//7P/hn+3/y65lfSbqYpHYsIUQ1JwWhipo6VT/usoON\nIy8Fv8S7u95VO5IQopqTglBFdesGVlbw888wIXQC35/8nrTcNLVjCSGqMSkIVZRG83crwcneiTHa\nMczfPV/tWEKIakwuKldhhYXg6Qn/+x+4+2Thu8SX4y8ex9nBWe1oQggzIxeVzZy1tf65hPnzwcXB\nhcH+g/lg7wdqxxJCVFPSQqji8vL0zybs3w/WDdPQfqoleUIyTvZOakcTQpgRaSFUAw4OMG4cfPAB\nNK3blD6t+7Bo/yK1YwkhqiFpIZiBrCzw9YWTJ+GyRRKdl3Um5eUUHG0d1Y4mhDAT0kKoJlxcoH9/\nWLIEvBp40aV5Fz49+KnasYQQ1Yy0EMzEiRPw6KOQmgqnrh3hia+fIOWVFOys7NSOJoQwA9JCqEa8\nvaFTJ/jySwhwDqBdk3YsS1imdiwhRDUiLQQzsnu3fqjNpCSIP7+PQf8bRPKEZKwtrdWOJoSo4qSF\nUM107qy/nvDtt9DBrQMtnVoSczRG7VhCiGpCCoKZmToV3nsPFAVmhs9k7q65FOuK1Y4lhKgGpCCY\nmd694epV2L4dIj0icbJ3Yu3xtWrHEkJUAyYtCKNHj8bZ2Rl/f3/DskuXLtGtWze8vLzo3r07V65c\nMbw2d+5cWrVqhbe3N5s2bTJlNLNlYQGvvqrvzkKj0TAzfCZzds6psddVhBAVx6QFYdSoUWzcuNFo\n2bx58+jWrRtJSUl06dKFefPmAZCYmMjq1atJTExk48aNjB8/Hp1OZ8p4ZmvYMDh0CH7/HXq26gnA\nT8k/qZxKCGHuTFoQwsPDqV+/vtGy9evXM2LECABGjBjB999/D8C6deuIiorC2toaDw8PPD09iYuL\nM2U8s2VnBxMmwIIF+lbCjPAZvLPzHWklCCHKpdKvIWRnZ+PsrO++2dnZmezsbADOnTuHm5ubYT03\nNzcyMzMrO57ZeOEFWL8eMjKgv09/Lt64SGxqrNqxhBBmTNWLyhqNBo1Gc9fXRenq19c/k7BwIVha\nWDK983Te2fmO2rGEEGbMqrIP6OzsTFZWFi4uLpw/f57GjRsD4OrqSnp6umG9jIwMXF1dS93H7Nmz\nDdMRERFERESYMnKVNWkStG0Lr78OQwOGMnv7bPZn7CfULVTtaEIIlcXGxhIbG/tA25j8SeXU1FR6\n9erF0aNHAYiOjqZBgwZMmzaNefPmceXKFebNm0diYiKDBw8mLi6OzMxMunbtyqlTp0q0Emryk8ql\nGTIEAgMhOhqWxC3hl9O/sD5qvdqxhBBVzP18d5q0IERFRbF9+3ZycnJwdnbmzTffpE+fPgwcOJC0\ntDQ8PDxYs2YN9erVA2DOnDksW7YMKysrFi5cSI8ePUoGloJg5LffoGdPOHMGijU3aPFRC34Z+gsB\nzgFqRxNCVCGqFwRTkIJQUvfuMHgwjBwJ83fP5+D5g6wasErtWEKIKkQKQg2xeTNMnAhHj8L1wmu0\n+KgFu0fvxquBl9rRhBBVhHRuV0N07Qo2NvDzz+Bo68hLwS/x7q531Y4lhDAzUhCqAY3m707vACaE\nTuD7k9+TlpumbjAhhFmRglBNPPusfjS1uDhwsndijHYM83fPVzuWEMKMyDWEamThQti1C775BrLy\nsvBd4svxF4/j7OCsdjQhhMrkonINk5cHHh6wbx94esJLP71EbevavNtNricIUdNJQaiBXn8dLl2C\npUshLTcN7adakick42TvpHY0IYSKpCDUQNnZ4O0NJ09C48Ywet1omtVtxqyIWWpHE0KoSG47rYGc\nnfUXmJcs0c9PD5vO4vjFXMu/pm4wIUSVJwWhGpoyBT7+GK5fB68GXnRp3oVPD36qdiwhRBUnBaEa\nat0aOneG5cv18zPCZ/DB3g+4WXRT3WBCiCpNCkI1FR0NH3wARUUQ4BxAuybtWJawTO1YQogqTApC\nNdWxIzRpAmvX6udnhs/kvd3vUVhcqG4wIUSVJQWhGps6FebPB0WBDm4daOnUkpijMWrHEkJUUVIQ\nqrFevfQPq90aNGlm+Ezm7ppLsa5Y1VxCiKpJCkI1ZmEBr776d6d3kR6RONk7sfb4WnWDCSGqJCkI\n1dzQoXD4sH6sBI1Gw8zwmczZOUce7hNClCAFoZqzs4MJE2DBAv18z1Y9Afgp+ScVUwkhqiLpuqIG\nuHwZWrbUtxTc3WHNsTX8Z99/2D16NxqNRu14QohKIF1XCADq19ePt7xwoX6+v09/Lt64SGxqrJqx\nhBBVjLQQaoi0NAgKgpQUqFcPlicsZ8XhFawduJYGtRqoHU8IYWJVtoUwd+5c2rRpg7+/P4MHDyY/\nP59Lly7RrVs3vLy86N69O1euXFEjWrXVtCk89RR8+leXRkMDhtKgVgOaL2yO7xJfxv0wjq8Of0XK\n5RQpuELUUJXeQkhNTeXxxx/n+PHj2Nra8txzz/HUU09x7NgxGjZsSHR0NO+++y6XL19m3rx5JQNL\nC+GhHT6sLwopKWBrq19WpCviSPYRdqXtMvwoKIQ1DSPMPYywpmEEugRiZWGlbnghRLlUyfEQLl26\nRMeOHdm3bx+Ojo4888wzvPzyy0yYMIHt27fj7OxMVlYWERERnDhxomRgKQjl0qMHPPccjB5d+uuK\nopB6JfXvApG+i/TcdELdQg0FItQtFAcbh8oNLoQolypZEAA+++wzpkyZgr29PT169GDlypXUr1+f\ny5cvA/ovJScnJ8O8UWApCA9k06ZNNGnSBB8fHywtLfn1V/1tqL//rn9w7X5cunGJPel7DEUiISsB\nn4Y++lZE0zA6u3fmEcdHTPtGhBDlcj/fnZV+HuD06dP85z//ITU1lbp16/Lss8/y9ddfG62j0Wju\nejvk7NmzDdMRERFERESYKK35W7hwIT/99BO2tra0adOGxx/vws2bnfn661CGD3e5r3042TvxtNfT\nPO31NAA3i25y4NwBdqXtYsXhFYz7YRxO9k6G4hDWNAzvht6G32FOTg6LFy9m6tSp1K5d22TvVQjx\nt9jYWGJv9Vtznyq9hbB69Wo2b97M559/DsDKlSvZt28fW7duZdu2bbi4uHD+/HkiIyPllFEFUBSF\nzz//nJdffpn8/Hw0Gg22tg7cvJnPRx8t4KWXXir3MXSKjuMXjhtOMe1K28W1/Gt0btqZOsl1+G7+\ndxTmFzJlyhTmzJlTAe9KCPGgquQpo8OHDzNkyBDi4+Oxs7Nj5MiRhISEcPbsWRo0aMC0adOYN28e\nV65ckYv7aITuAAAgAElEQVTKFSg5ORlvb290Op1hma1tLRISDuDj41Phx/vt1G+MGjWK3+N/pyi/\nCAALawte+OoFnmr3FJ3cO1HPrl6FH1cIUboqWRAA3nvvPVasWIGFhQVt27bl888/59q1awwcOJC0\ntDQ8PDxYs2YN9eqV/MKQgvBwJk6cyGeffcaNGzduW6rBy8uLo0ePYGNjUyHHURSFmJgYxo8fz82b\nNyks/Hv8BUsrS1p1bEWT55sQlxlH83rNjU4zNa3bVJ6cFsJEqmxBKA8pCA9u//79REZGGhUD/Rdv\nLRQlnwYNXuHRRxfg7a0ffvPWv0upx3d17tw5hg0bxv79+7l+/Xqp69jb2xMbG4u2nZbfsn4zOs1k\nY2ljdLurX2M/LC0sy/HOhRC3SEEQ3Lx5k9atW5OWlma03N7enpkzZ/L222+Tn5/P7Nk7gDBOnoQT\nJ+DkSahdmxJFwtsbPDzA8o7v6fPnz+Pl5cX169fv+fsJDAwkISHBqDWgKAqnLp1id/puw91MWXlZ\ndHDrYLibKcQ1hFrWtSrokxGiZpGCIJgyZQqffPIJf/75p2FZrVq1mD59Ov/617/IzMxk6NChpKen\nc+rUKcM6igKZmfrCcHuROHEC/vhD31ne7YWidWuF1NQN7NmzmV9++YWUFP0Tz0VFRSUy1a5dm2XL\nljFw4MC7Zr9w/YKhQOxO382R7CP4N/Y3nGbq3LQzjWs3rrgPS4hqTApCDRcfH89jjz1W4lRR69at\nOXr0KFZW+ruOFUUhOTkZLy+v+9rv9euQnFyyUCQlgaOjvkBkZT3PyZNfGB3X0dGRGzduUFhYSOPG\njTl79ix2dnb3/X7+LPyT+Mx4w2mmvel7cXZwNpxiCmsahqeTp1yHEKIUUhBqsPz8fFq3bs3Zs2eN\nltvb2xMXF4efn1+FH1On+7tV8dxzHly6dPux69C48RQaNbIkN/cn/vjjN+bPX8vIkU9Qp87DHa9Y\nV8zvf/xuaEXsTNtJQXGB4SJ1WNMwtC5arC2tK+T9CWHOpCDUYFOnTmXp0qUlThVFR0cza9Yskx77\n0qVLPPLIIxQUFBiW2djYsGFDGjk5zpw4ASdOKJw8qSEpCerUKf1aRdOmJa9V3EtabprhGsTu9N2k\nXE4huEmwoUB0cOtAHduHrEBCmDEpCDXUgQMHePTRR0ucKtLfYnoUa2vT/sX8ww8/MHToUK5evWpY\n1qRJEzIzM0usq9NBRkbp1ypycqBVq5KFonVr/amp+3Hl5hX2pu81nGY6eO4grRq0MjrN5FrHtaLe\nuhBVlhSEGig/Px8fHx/OnDljtNze3p59+/YREBBg8gwTJ05k0aJFRg/BDR06lJUrVz7QfvLy9Ncl\n7iwUycn6W2L1F7NLtiru1kdTQXEBh84fMurd1dHW0XC7a+emnfFt5IuFRsaOEtWLFIQaaNq0aSxe\nvLjEqaIpU6bw5ptvVkoGHx8fo25HHBwcWLp0KcOGDauQ/et0kJ5uXChuTV+6VHqrwsur9FaFoiic\nvHjScIppV9ouLv55kU7unQwtiPZN2mNndf8Xv4WoiqQg1DCHDh0iLCysxKkiT09Pjh07ZvJTRQB5\neXk4OTkZPaFsZ2fHiRMnaNasmcmPf+1a2a2K+vVLv1bh7m7cqsjKy2J32m7DaabEC4loXbSGi9Wd\n3DvJKHPC7EhBqEEKCgrw8fEhJSXFaLm9vT179+4lMDCwUnJs2bKF/v37G10/aNCgATk5OZVy/LLo\ndPphREtrVVy+rG9BlNaqcHCAvII84jLjDKeY9mXsw72uu+E6ROemnWler7nc7iqqtCrZ/bUwjdmz\nZ5OVlWW0rFatWkyaNKnSigHAtm3bSnRb8eijj1ba8ctiYaF/wtrDQz9I0O2uXjVuVXz/vf7fp05B\ngwbQurUDrVs/jrf347zaGjzDi7hkfYQ9Gbv4IekHpm2ZBkCAcwD21vbYWtpia2WLjYUNtla22Fra\nYmN572lbq7/m72PaxtJGrnOICicthGogISGBzp0739FxHYZTRRXVcd390Gq1/Pbbb4b5WrVq8eGH\nHzJu3LhKy1BRiovLblXk5v7dqmjtreDUIpWCuonoNAUUKfkUof8pVvTzhUo+xRRQqORTqMunSPl7\nulApoLA4nwKd/qdQV0BBcb7+R1dAflE++cX5FBQbT1tbWD9coXnAQvWgRUv6n6qa5JRRDVBQUICv\nry+nT582Wm5vb8+ePXsICgqqtCz5+fnUqVPH6PmD2rVrc+DAAby9vSstR2W4erXkrbIZGfpTU8XF\nxj93LrvX/O3LFEXfurG0/PvflpZgYalgYVWIhU0+ltYFWNjkY2GdD9b5WFgVYGGdj8Y6HywL0Fjn\no7HKR2NVAJb5cNu0YpUPFvr1FMt8/Y9FAYrF39M6i3x0mr+mNfmG+WJNATryKdbko9MUUPxXEdRg\ngSU2WGlsscL272mNLVbYYK2xxdrCFivN39P6H/28jaV++tY43ho0gP50nIXm72kNfw+kpbn1j+G0\n3a35v6fhr8G3btuev9b5e9p4fyW2uWMaNH9luvtxjPZbYto4w633eWv7W7k0RtP3eG+lTM8c0EdO\nGVV3b7zxBufPnzdaVqtWLV555ZVKLQagf/7Bzs7OqCBYWFjQunXrSs1RGerUgeBg/Y8pKUpZRUOD\nTmdDcbHNQxWaitzm9mVFRQqFxcUUKvkUFOlbMvpWj77lU3irFaT81UrS5f/VgiqgkHz+VP5qVZGP\njmJA+esHlL/+4ba5W9P6eV2J15Q7tuf27TXKX7N/TaOfN0yjvwsNzd2OWfprhmlNadv8PV1y/q8l\n93vMW+vdlrPE+zSavzspCGYsMTGRBQsWGH0BA7i4uBgNM1pZtm/fzs2bN42WdejQQS62loNGA1Zm\n9X+pBv3XihUgw6VWJZol9/7/UK5KmTFHR0datGhBrVp/dwltb2/PN998U6nXDW7ZsGGDUXGys7Oj\nZ8+elZ5DCPFwpCCYMXd3d44ePcr06dOxt7fH1taWCRMm0LZt20rPUlxczKFDh4yWWVtbV4k7jIQQ\n90cuKlcTx44d45NPPmHBggXY2tpW+vEPHTpEREQE165dMyyzs7MjLy8PywftoU4IUeHu57tTWgh3\nWLduHcePHy/3fmJjY+nVq9dd18nNzeXjjz82zJ87d45nn332oY7Xpk0bFi1apEoxANixY4fR08kA\n7dq1k2IghBmRgnCH7777jsTExEo51uXLl1m6dKlhvkmTJnzzzTeVcuyK9tNPPxldULaxsZHrB0KY\nGbMsCF9//TWhoaFotVr++c9/otPpiI+PJzAwkPz8fK5fv46fnx+JiYlcv36drl270q5dOwICAli/\nfr1hP1999RWBgYEEBQUxfPhw9u7dyw8//MDUqVPRarUluoH45ptv8Pf3JygoiMceewzQj1k8atQo\nAgICaNu2LbGxsSXyzp49m/fff98w7+/vz9mzZ5k+fTqnT59Gq9Uybdo0zp49axi4pqz9fvnll/Tr\n148nn3wSLy8vpk2bVsGf7oNTFIW9e/caLbOzszN8RkII86DaDW1Xrlzh+eef59ixY2g0GpYvX06r\nVq147rnnOHv2LB4eHqxZs4Z69eqV2HbNmjXs2bMHS0tLxo8fT0xMDMOGDaN37968/vrr3Lhxg2HD\nhuHr60txcTHfffcdjo6O5OTk0LFjR3r37s2xY8d455132Lt3L05OTly5coV69erRu3dvevXqRb9+\n/Uoc96233mLTpk088sgjhr56lixZgqWlJUeOHOHkyZN0796dpKQko+1Ku+1So9Hw7rvvcuzYMRIS\nEgBITU01rHu3/R4+fJjffvsNGxsbWrduzcsvv4yrq3p9+p84caLEucmbN2/Svn17lRIJIR6Gai2E\nV155haeeeorjx49z5MgRvL29mTdvHt26dSMpKYkuXbowb968Urc9ePAg7du3R6vVsnXrVkPf///+\n97/ZtGkTBw4cIDo6GgCdTsdrr71GYGAg3bp149y5c2RnZ7N161YGDhyIk5MTgFHhKevCS+fOnRkx\nYgSff/65YfD43bt3M3ToUABat25Ns2bNShSEstztAk9Z+9VoNHTp0gVHR0dsbW3x9fUlNTX1vo5n\nKjt27CjxXtq0aaPKra9CiIenSgshNzeXnTt3smLFCn0IKyvq1q3L+vXr2b59OwAjRowgIiKi1KIw\nYsQI5syZU2J5Tk4O169fp7i4mBs3blCrVi1iYmLIycnh0KFDWFpa0rx5c27evHnXK+5lPUj18ccf\nExcXx4YNG2jXrh0HDx4ESn6x37m9lZWV0WAxdz68VZay8t1+4djS0pLi4uL72p+p/Pzzz0bjL1hZ\nWfHUU0+pmEgI8TBUaSGcOXOGRo0aMWrUKNq2bcvYsWO5fv062dnZODs7A+Ds7Ex2dnap2//vf//j\nwoULgH783rS0NAD+8Y9/8PbbbzN48GDDufWrV6/SuHFjLC0t2bZtG2fPnkWj0fD444/zzTffcOnS\nJUB/gRf0D3vd3nXz7U6fPk1ISAhvvPEGjRo1Ij09nfDwcGJiYgBISkoiLS2tRFcNHh4ehnv0Dx06\nZGjRODo6Gt2mebvS9uvt7V1qkVDzNlxFUdi5c6fRslq1ahEZGalSIiHEw1KlhVBUVMShQ4dYvHgx\nwcHBTJw4sURLQKPRlPmXemBgIAEBASiKQt26dfnqq6/Yvn07tra2DBo0CJ1OR6dOnYiNjWXIkCH0\n6tWLgIAA2rdvj4+PDwC+vr7MnDmTxx57DEtLS9q2bcuyZcsYNGgQY8eOZdGiRXzzzTe0aNHCcNzo\n6GiSk5NRFIWuXbsSGBiIt7c3L7zwAgEBAVhZWbFixQqsra2N8vfv35+vvvoKPz8/QkNDDQWjQYMG\ndO7cGX9/f5566inGjx9v2Gb8+PH33O/tn5Vazp49W6KX1Rs3btChQweVEgkhQH/re2k3udyNKg+m\nZWVl0bFjR8Nfyrt27WLu3LmkpKSwbds2XFxcOH/+PJGRkUZDMYI8mFbVrFy5kvHjx5OXl2dY5u3t\nXSHPcgghKk6VfTDNxcUFd3d3w8XXLVu20KZNG3r16mW4rrBixQr69u2rRjzxAH755RejYmBhYcET\nTzyhYiIhxMNSreuKw4cP8/zzz1NQUEDLli1Zvnw5xcXFDBw4kLS0tDJvO5UWQtXSpEkTo+6369Sp\nQ0xMDE8//bSKqYQQd5IBcoRJZWVl4eHhQX5+vmGZtbU12dnZ1K9fX8VkQog7VdlTRqJ62LVrV4m+\nk1xdXaUYCGGmpCCIh7Z582aj22Y1Gg3dunVTMZEQojykIIiHtnnzZqMmqIODgxQEIcyYFATxUK5c\nuUJGRobRsoKCAsLDw1VKJIQoLykI4qHs3r0be3t7o2VOTk64uLiolEgIUV5SEMRD+fXXX42ePwCk\nuwohzJwUhCrmQR81V8vGjRuNOuxzcHCgR48ed93GXN7bw5L3Z96q+/u7H1IQqhhz+I/yzz//5NSp\nU0bLiouL73n9wBzeW3nI+zNv1f393Q8pCOKB7du3r8T1A3t7ezw8PNQJJISoEFIQxAPbtm2b0fgH\nAGFhYar2uiqEKD+z67oiKCiIw4cPqx1DCCHMSmBgIL/99ttd1zG7giDUVVBQgKOjIwUFBYZlDg4O\n7N+/H19fXxWTCSHKS04ZiQdy8OBB7OzsSiy/NfCQEMJ8SUEQD2THjh0lxoQODQ2V6wdCVANmUxA2\nbtyIt7c3rVq14t1331U7ToUaPXo0zs7O+Pv7qx3lnjZs2GB0usjOzo6nnnrqrtukp6cTGRlJmzZt\n8PPz46OPPjJ1zEp18+ZNQkNDCQoKwtfXl9dee03tSBWuuLgYrVZLr1691I5S4Tw8PAgICECr1RIS\nEqJ2nAp35coVBgwYgI+PD76+vuzbt6/slRUzUFRUpLRs2VI5c+aMUlBQoAQGBiqJiYlqx6owO3bs\nUA4dOqT4+fmpHeWuioqKFHt7ewUw/Dg6OioHDhy463bnz59XEhISFEVRlGvXrileXl7V6venKIpy\n/fp1RVEUpbCwUAkNDVV27typcqKK9f777yuDBw9WevXqpXaUCufh4aFcvHhR7RgmM3z4cOWLL75Q\nFEX/3+eVK1fKXNcsWghxcXF4enri4eGBtbU1gwYNYt26dWrHqjDh4eFmMYbA0aNHsbKyMlpWWFhI\nYGDgXbdzcXEhKCgI0F+A9vHx4dy5cybLqYZatWoB+ovuxcXFODk5qZyo4mRkZPDTTz/x/PPPV9vB\nqarr+8rNzWXnzp2MHj0aACsrK+rWrVvm+mZREDIzM3F3dzfMu7m5kZmZqWKimmnnzp0UFRUZLdNq\ntSWKxN2kpqaSkJBAaGhoRcdTlU6nIygoCGdnZyIjI6vVHVeTJk1i/vz5WFiYxdfFA9NoNHTt2pX2\n7dvz3//+V+04FerMmTM0atSIUaNG0bZtW8aOHVviGaLbmcVvWC5YVg0bNmzgxo0bhnlra+t7Xj+4\nXV5eHgMGDGDhwoU4ODiYIqJqLCws+O2338jIyGDHjh3VphuEH3/8kcaNG6PVaqvtX9G7d+8mISGB\nn3/+mSVLlrBz5061I1WYoqIiDh06xPjx4zl06BC1a9dm3rx5Za5vFgXB1dWV9PR0w3x6ejpubm4q\nJqp5FEVhz549Rsvs7e2JiIi4r+0LCwvp378/Q4cOpW/fviZIWDXUrVuXnj17cuDAAbWjVIg9e/aw\nfv16mjdvTlRUFFu3bmX48OFqx6pQjzzyCACNGjXimWeeIS4uTuVEFcfNzQ03NzeCg4MBGDBgAIcO\nHSpzfbMoCO3btyc5OZnU1FQKCgpYvXo1vXv3VjtWjZKcnGzUuyno76659R/a3SiKwpgxY/D19WXi\nxImmiqianJwcrly5AsCNGzfYvHkzWq1W5VQVY86cOaSnp3PmzBlWrVrF448/zldffaV2rArz559/\nGoaBvX79Ops2bTKLu/3ul4uLC+7u7iQlJQGwZcsW2rRpU+b693/yV0VWVlYsXryYHj16UFxczJgx\nY6rVg1BRUVFs376dixcv4u7uzptvvsmoUaPUjmVkx44dJZb5+Phga2t7z213797N119/bbi1D2Du\n3Lk88cQTFZ5TDefPn2fEiBHodDp0Oh3Dhg2jS5cuascyiep2+jY7O5tnnnkG0J9eGTJkCN27d1c5\nVcVatGgRQ4YMoaCggJYtW7J8+fIy15WuK8R96d+/P99++61h3tLSkqlTpzJ37lwVUwkhKpJZnDIS\n6ruzhVC7dm0ef/xxldIIIUxBCoK4p7S0tBLDZd64cYOOHTuqlEgIYQpSEMQ97dy5s8SzBs2bN692\nt44KUdNJQRD39Msvvxi1EDQazT3HTxZCmB8pCOKe7nxQx9HRka5du6qURghhKnKXkbinDRs2sGbN\nGrZu3coff/yBTqcjKyuLBg0aqB1NCFGBpIUg7qlnz56sWLGC9PR0MjIy2Lt3rxSD2zz33HOkpKQA\n+s/q6tWrd11/8uTJ1ap7BFF9SAtBiHI4deoUEydO5Mcff7zvbZKTk5kyZQrr1683YTIhHpy0EIQo\nw6effopWq0Wr1dK8efNSn7tYtWqVUTcqHh4eXLp0idTUVHx8fBg3bhx+fn706NHDMNJcq1atSE1N\nNXR3IURVYZYFwcLCgldffdUwv2DBAt54441KzXDw4EFeeeWVSj1mRZg1axa//vprufeTm5vLxx9/\nbJg/d+4czz77bLn3+6BMcdz4+HisrKxo1KgRCQkJxMfH4+7uzpQpU0qsu3v3btq3b2+Yv71rh1On\nTvHSSy/x+++/U69ePdauXQvox4TQarXs3bu3QnMLUV5mWRBsbGz47rvvuHjxIlD5/asUFRXRrl07\nFi5cWKnHLS3Hg3rjjTcqpJ+dy5cvs3TpUsN8kyZN+Oabb8q93wdV0cctLi5m2rRpPPHEE4bunl9+\n+WW6dOlCz549S6x/9uxZQ2+Zd2revDkBAQEAtGvXjtTUVED/32uTJk0M80JUFWZZEKytrRk3bhwf\nfvhhiddGjhxp+EsMMDw8FRsby2OPPUbfvn1p2bIl06dPZ+XKlYSEhBAQEGC4KHjhwgUGDBhASEgI\nISEhhi6fZ8+ezbBhwwgLC2P48OFs377dML5sXl4eo0aNIiAggMDAQKM+f2556623CAkJwd/fn3/8\n4x+G5REREUycOBGtVou/vz/x8fFGx+vUqRNeXl58/vnnhvcRHh5Onz598PPzIz8/33Dstm3bGvrh\n79u3LytXrgT0pz6GDh1a4vPx8PBgxowZaLVa2rdvz6FDh+jevTuenp58+umnhvfWtWtX2rVrR0BA\ngOG89/Tp0zl9+jRarZZp06Zx9uxZ/Pz8AH0vqKVl+vLLL+nXrx9PPvkkXl5eTJs2rdTf763TLgAH\nDhwgMjISgO3btxtO4bRt25br16+Tmppq6J3ybvv/4osvaN26NaGhoYwdO5YJEyaUeuxFixYxYMAA\nGjVqZNhneno6s2bNMqzj4ODA66+/TlBQEKmpqVy4cAHQD/6TlZXFo48+ytChQw1/qJw5c4alS5fy\n0Ucf8frrrwP6HmA1Gg3z588nJCSEwMBAZs+eDeh73ezZsydBQUH4+/uzZs2aUrMKUeFMOJSnyTg4\nOChXr15VPDw8lNzcXGXBggXK7NmzFUVRlJEjRyr/+9//jNZVFEXZtm2bUq9ePSUrK0vJz89XmjRp\nosyaNUtRFEVZuHChMnHiREVRFCUqKkrZtWuXoiiKcvbsWcXHx0dRFEWZNWuW0r59e+XmzZuG/T39\n9NOKoihKdHS0MmnSJMMxL1++XCLzpUuXDNPDhg1TfvjhB0VRFCUiIkIZN26coij6sZVvjas8a9Ys\nJSgoSLl586aSk5OjuLu7K+fOnVO2bdum1K5dW0lNTVUURVEWLFigjBkzRlEURTlx4oTStGlTJT8/\nX8nOzlY8PT2VHTt2KF5eXoZMI0eOVNauXasoin4s2U8++URRFEWZNGmS4u/vr+Tl5SkXLlxQnJ2d\nFUXRj6N89epVRVEU5cKFC4qnp6eiKIqSmppqNAb0mTNnDPOlZbp586ayfPlypUWLFsrVq1eVmzdv\nKs2aNVMyMjJKfFa3j3EbHx+vREREKIqiKL169VL27NmjKIp+DOOioiKj45a1/8zMTMXDw0O5fPmy\nUlhYqISHhysTJkwocdyMjAwlIiJC0el0ysiRI5X33ntP8fPzK/H71Gg0yo8//qgoiqI0b95ceeGF\nFxRFUZSnn35aadiwoXLx4kXlvffeUxwdHQ25o6KilNmzZytLlixRHBwclOHDhytvv/224XdfXFys\nPP3008qOHTuUtWvXKmPHjjUcLzc3t0RWIUzBLFsIoH84avjw4Xz00Uf3vU1wcDDOzs7Y2Njg6elp\neNrWz8/P0HzfsmULL730Elqtlj59+nDt2jWuX7+ORqOhd+/epXb3/Ouvv/Liiy8a5uvVq1dina1b\nt9KhQwcCAgLYunUriYmJhteioqIA/djKV69eJTc3F41GQ58+fbC1taVBgwZERkYSFxeHRqMhJCSE\nZs2aAfpz2Lf++m/dujXNmjXj5MmTNG7cmDfffJPHH3+cDz74oNRMgOGCqL+/Px07dqR27do0bNgQ\nW1tbrl69ik6n47XXXiMwMJBu3bpx7tw5/vjjj7uOnlVapqSkJDQaDV26dMHR0RFbW1t8fX0f6LRJ\n586dmTRpEosWLeLy5ctYWlqWWKe0/cfFxfHYY49Rr149rKysePbZZ0vNP3HiRObNm4dGo0FRFH7+\n+WcuX75MZGQkWq2WcePGAfpTlrdOH4WEhHDkyBEA9u3bZ2iR9u3b1zBU4Z49e9BqtWg0GsPnkpCQ\nQFZWFps2bUKr1dKuXTtOnjzJqVOn8Pf3Z/PmzUyfPp1du3ZRp06d+/6MhCgPsxgPoSwTJ06kbdu2\nRmMHWFlZGQZy0el0FBQUGF67/cvcwsLCMG9hYWE4H68oCvv378fGxqbE8W4NpF6au31B3rx5kxdf\nfJGDBw/i6urKG2+8YbjjpDRlXRO5NaZt7dq173rsW9sfOXKEhg0b3nX86ds/g9vfs4WFBYWFhXz7\n7bfk5ORw6NAhLC0tad68+V2zl5XpzuOBvgvt4uLiEuvc/ju8/VjTpk3j6aefZsOGDXTu3Jlffvml\nRIG+c/9FRUUlPs+ysh08eJBBgwYB+kFvatWqxX//+98SgzFZW1sbpsPDw426AE9OTsbKygpHR0fq\n169vWD558mQsLS0NRdbDwwNbW1tee+01Q6G5XUJCAhs2bOD111+nS5cu/Otf/yo1sxAVyWxbCAD1\n69dn4MCBfPHFF4b/6T08PDh48CAA69evp7Cw8IH22b17d6NWx+HDh++5Tbdu3ViyZIlh/s7bCW99\nqTVo0IC8vDyji6CKorB69WoAdu3aRb169ahTpw6KorBu3Try8/O5ePEisbGxBAcHl/gyCw8PJyYm\nBoCkpCTS0tJo3bo1cXFxbNy4kUOHDrFgwYJ7/iVe1pfk1atXady4MZaWlmzbto2zZ88C+hbarZGm\n7lRaJm9v71KPUdoyDw8PwxCUt18POn36NG3atCE6Oprg4GBOnjx51/cE+uIYHBzM9u3buXLlCkVF\nRaxdu7bUopuSksKZM2c4c+YMAwYM4OOPP77nyHzOzs5YW1tz+vRpOnXqxKpVqwCIiYnh0UcfBfQt\nm9uXFxYWEh0dTY8ePVi2bBnXr18HIDMzkwsXLnD+/Hns7OwYMmQIr7766l2HPBSiIpllQbj9f+Yp\nU6aQk5NjmB87dizbt28nKCjIqAl/53Z37u/Wax999BEHDhwgMDCQNm3aGC6u3rn97du8/vrrXL58\nGX9/f4KCgkoMsF6vXj3Gjh2Ln58fTzzxBKGhoUb7sbOzo23btowfP54vvvjCsDwgIIDIyEg6duzI\nv//9b1xcXIyOCzB+/Hh0Oh0BAQEMGjSIFStWoNPpGDduHMuXL+eRRx7h/fffZ/To0ff8TEt7f0OG\nDFJIBSwAAAE/SURBVOHAgQMEBASwcuVKw0h1DRo0oHPnzvj7+zNt2jSj7UvLZG1tXeIYZf1OZs2a\nxSuvvEJwcDBWVlaGdRYuXIi/vz+BgYHY2Njw5JNPGu2jtP2D/k6kGTNmEBISQlhYGM2bNy/XaZg7\nP6fIyEhatmzJokWLWL58OYGBgcTExBjuQlu4cCFLliwhICCAc+fOYWdnR1hYGN26dWPw4MF07NiR\ngIAABg4cyLVr1zh69CihoaFotVreeustaR2ISiNPKqssMjKS999/n7Zt2xotf+ONN3BwcCj13nfx\n4K5fv07t2rUpKiqiX79+jBkzhj59+qgdS4gqxSxbCDVFdRu/Vk2zZ8823NrbokULKQZClEJaCEII\nIQBpIQghhPiLFAQhhBCAFAQhhBB/kYIghBACkIIghBDiL1IQhBBCAPD/AfkCc/rPAgQ3AAAAAElF\nTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x752b7f0>"
]
}
],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|