summaryrefslogtreecommitdiff
path: root/Engineering_Heat_Transfer/CHAPTER9.ipynb
blob: d66004ef694c7615f3e4b61b28cd750e58a21f4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
{
 "metadata": {
  "name": "CHAPTER9"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 9: Heat Exchanger"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.1 Page No.458"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "T1=100.0 \n",
      "T2=75.0\n",
      "t1=5.0\n",
      "t2=50.0\n",
      "\n",
      "import math\n",
      "LMTD_counter=((T1-t2)-(T2-t1))/(math.log((T1-t2)/(T2-t1)))\n",
      "LMTD_parallel=((T1-t1)-(T2-t2))/(math.log((T1-t1)/(T2-t2)))\n",
      "\n",
      "print\"The LMTD for counter flow configuration is  \",round(LMTD_counter,1),\"C\"\n",
      "print\"The LMTD for parallel flow configuration is \",round(LMTD_parallel,2),\"C\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The LMTD for counter flow configuration is   59.4 C\n",
        "The LMTD for parallel flow configuration is  52.43 C\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.2 Page No. 459"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "T1=250\n",
      "T2=150\n",
      "t1=100\n",
      "t2=150\n",
      "\n",
      "import math\n",
      "LMTD_counter=((T1-t2)-(T2-t1))/(math.log((T1-t2)/(T2-t1)));\n",
      "LMTD_parrelel=0\n",
      "\n",
      "print\"The LMTD for counter flow configuration is\",round(LMTD_counter,1),\"C\"\n",
      "print\"if parallel flow is to give  equal  outlet  temperatures,then the area  needed  must be infinite which is not feasible economically.\"\n",
      "print\"The LMTD for parrelel flow configuration is\",LMTD_parrelel,\"C\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The LMTD for counter flow configuration is 72.1 C\n",
        "if parallel flow is to give  equal  outlet  temperatures,then the area  needed  must be infinite which is not feasible economically.\n",
        "The LMTD for parrelel flow configuration is 0 C\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.3 Page No.463"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "rou_1= 0.985*62.4        # density in lbm/ft**3 \n",
      "cp_1=0.9994              # specific heat BTU/(lbm-degree Rankine) \n",
      "v_1= 0.514e-5            # viscosity in ft**2/s \n",
      "kf_1 = 0.376             # thermal conductivity in BTU/(hr.ft.degree Rankine) \n",
      "a_1 = 6.02e-3            # diffusivity in ft**2/hr \n",
      "Pr_1 = 3.02              #  Prandtl Number \n",
      "m_1=5000                 # mass flow rate in lbm/hr\n",
      "T_1=195                  # temperature in degree F\n",
      "rou_2= 1.087*62.4        # density in lbm/ft**3 \n",
      "cp_2=0.612               # specific heat BTU/(lbm-degree Rankine) \n",
      "v_2= 5.11e-5             # viscosity in ft**2/s \n",
      "kf_2 = 0.150             # thermal conductivity in BTU/(hr.ft.degree Rankine) \n",
      "a_2 = 3.61e-3            # diffusivity in ft**2/hr \n",
      "Pr_2 = 51                # Prandtl Number \n",
      "m_2=12000                # mass flow rate in lbm/hr\n",
      "T_2=85                   # temperature in degree F\n",
      "ID_a=0.1674\n",
      "ID_p=0.1076\n",
      "OD_p=1.375/12\n",
      "A_p=math.pi*ID_p**2/4\n",
      "A_a=math.pi*((ID_a)**2-(OD_p)**2)/4\n",
      "\n",
      "D_h=ID_a-OD_p\n",
      "D_e=(ID_a**2-OD_p**2)/(OD_p)\n",
      "\n",
      "Re_1=(m_1/3600.0)*(ID_p)/(v_1*rou_1*A_p)\n",
      "Re_2=(m_2/3600.0)*(D_e)/(v_2*rou_2*A_a)\n",
      "\n",
      "Nu_1=0.023*(Re_1)**(4/5.0)*(Pr_1)**0.3\n",
      "Nu_2=0.023*(Re_2)**(4/5.0)*(Pr_2)**0.4\n",
      "\n",
      "h_1i=Nu_1*kf_1/ID_p\n",
      "h_1o=h_1i*ID_p/OD_p\n",
      "h_2=Nu_2*kf_2/D_e\n",
      "\n",
      "Uo=1/((1/h_1o)+(1/h_2))\n",
      "R=(m_2*cp_2)/(m_1*cp_1)\n",
      "L=20\n",
      "A=math.pi*OD_p*L\n",
      "T1=195\n",
      "t1=85\n",
      "T2=((T1*(R-1))-(R*t1*(1-exp((Uo*A*(R-1))/(m_2*cp_2)))))/(R*exp(Uo*A*(R-1)/(m_2*cp_2))-1)\n",
      "t2=t1+(T1-T2)/R\n",
      "print\"The outlet temperature of Ethylene glycol is %.1f degree F\",round(t2,1),\"F\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The outlet temperature of Ethylene glycol is %.1f degree F 99.4 F\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.4 Page No. 467"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "rou_1= 1.088 \t\t# density in kg/m**3 \n",
      "cp_1= 1007\t\t # specific heat in J/(kg*K) \n",
      "v_1= 18.2e-6\t\t # viscosity in m**2/s  \n",
      "Pr_1 =0.703 \t\t# Prandtl Number \n",
      "kf_1= 0.02814 \t\t# thermal conductivity in W/(m.K)\n",
      "a_1 = 0.26e-4 \t\t# diffusivity in m**2/s \n",
      "m_1=100 \t\t                # mass flow rate in kg/hr\n",
      "t1_air=20+273 \n",
      "t2_air=80+273\n",
      "rou_2= 1.0732\t\t # density in kg/m**3 \n",
      "cp_2= 1013 \t\t# specific heat in J/(kg*K) \n",
      "v_2= 21.67e-6 \t               #viscosity in m**2/s  \n",
      "Pr_2 =0.702 \t\t# Prandtl Number \n",
      "kf_2= 0.03352 \t\t# thermal conductivity in W/(m.K)\n",
      "a_2 = 0.3084e-4 \t\t# diffusivity in m**2/s \n",
      "m_2=90\t\t\t # mass flow rate in kg/hr\n",
      "T1_CO2=600 \n",
      "ID_a=.098\n",
      "ID_p=.07384\n",
      "OD_p=.07938\n",
      "\n",
      "import math\n",
      "A_p=math.pi*ID_p**(2)/4.0\n",
      "A_a=math.pi*((ID_a)**2-(OD_p)**2)/4.0\n",
      "\n",
      "q_air=(m_1/3600.0)*(cp_1)*(t2_air-t1_air)\n",
      "T2_CO2=T1_CO2-(q_air/(m_2*cp_2/3600.0))\n",
      "\n",
      "LMTD_counter=((T1_CO2-t2_air)-(T2_CO2-t1_air))/(log((T1_CO2-t2_air)/(T2_CO2-t1_air)))\n",
      "D_h=ID_a-OD_p\n",
      "D_e=(ID_a**2-OD_p**2)/(OD_p)\n",
      "\n",
      "Re_1=(m_1/3600.0)*(ID_p)/(v_1*rou_1*A_p)\n",
      "Re_2=(m_2/3600.0)*(D_e)/(v_2*rou_2*A_a)\n",
      "\n",
      "Nu_1=0.023*(Re_1)**(0.8)*(Pr_1)**0.3\n",
      "Nu_2=0.023*(Re_2)**(0.8)*(Pr_2)**0.4\n",
      "\n",
      "\n",
      "h_1i=Nu_1*kf_1/ID_p\n",
      "h_1o=h_1i*ID_p/OD_p\n",
      "h_2=Nu_2*kf_2/D_e\n",
      "\n",
      "Rd_air=0.0004\n",
      "Rd_CO2=0.002\n",
      "\n",
      "Uo=1/((1/h_1o)+(1/h_2))\n",
      "Uo=1/((1/Uo)+Rd_air+Rd_CO2)\n",
      "\n",
      "A=q_air/(Uo*LMTD_counter)\n",
      "\n",
      "L=(A/(math.pi*OD_p))   # length of each exchanger\n",
      "L_available=2          # available exchanger length\n",
      "N=L_available/L        # no. of exchangers\n",
      "\n",
      "fp=0.0245              #friction factor for air fom figure 6.14 corresponding to Re\n",
      "fa=0.033               #friction factor for cCO2fom figure 6.14 corresponding to Re\n",
      "V_air=(m_1/3600.0)/(rou_1*A_p)\n",
      "V_CO2=(m_2/3600.0)/(rou_2*A_a)\n",
      "\n",
      "dP_p=(fp*L_available*rou_1*V_air**2)/(ID_p*2)\n",
      "dP_a=((rou_2*V_CO2**2)/2.0)*((fa*L_available/D_h)+1)\n",
      "\n",
      "print\"(a)The number of exchangers is \",round(N,0)\n",
      "print\"(b)The overall exchanger coefficient is \",round(Uo,1),\" W/(sq.m.K)\"\n",
      "print\"(c)The pressure drop for tube side is  \",round(dP_p,2),\"Pa\"\n",
      "print\"The pressure drop for shell side is \",round(dP_a,1),\"Pa\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The number of exchangers is  1.0\n",
        "(b)The overall exchanger coefficient is  14.2  W/(sq.m.K)\n",
        "(c)The pressure drop for tube side is   12.83 Pa\n",
        "The pressure drop for shell side is  196.7 Pa\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.5 Page No. 484"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "rou_1= 0.994*62.4         # density in lbm/ft**3 \n",
      "cp_1=0.998             # specific heat BTU/(lbm-degree Rankine) \n",
      "v_1= 0.708e-5          # viscosity in ft**2/s \n",
      "kf_1 = 0.363          # thermal conductivity in BTU/(hr.ft.degree Rankine) \n",
      "a_1 = 5.86e-3          # diffusivity in ft**2/hr \n",
      "Pr_1 = 4.34          # Prandtl Number \n",
      "m_1=170000           # mass flow rate in lbm/hr\n",
      "T1=110.0               # temperature in degree F\n",
      "rou_2= 62.4           # density in lbm/ft**3 \n",
      "cp_2=0.9988           # specific heat BTU/(lbm-degree Rankine) \n",
      "v_2= 1.083e-5         # viscosity in ft**2/s \n",
      "kf_2 = 0.345          # thermal conductivity in BTU/(hr.ft.degree Rankine) \n",
      "a_2 = 5.54e-3         # diffusivity in ft**2/hr \n",
      "Pr_2 = 7.02           # Prandtl Number \n",
      "m_2=150000            # mass flow rate in lbm/hr\n",
      "t1=65                 # temperature in degree F\n",
      "OD=3/(4*12.0)\n",
      "ID=0.652/12.0\n",
      "OD_p=1.375/12.0\n",
      "Nt=224.0                # from table 9.3\n",
      "Np=2                  # no. of tube passes\n",
      "Ds=17.25/12.0\n",
      "Nb=15.0                # no. of baffles\n",
      "B=1\n",
      "sT=15/(16*12.0)\n",
      "C=sT-OD\n",
      "\n",
      "import math\n",
      "At=(Nt*math.pi*ID**2)/(4*Np)\n",
      "As=(Ds*C*B)/sT\n",
      "\n",
      "De=4*((sT/2.0)*(0.86*sT)-(math.pi*OD**2/8.0))/(math.pi*OD/2.0)\n",
      "\n",
      "Re_s=(m_1/3600.0)*(De)/(v_1*rou_1*As)\n",
      "Re_t=(m_2/3600.0)*(ID)/(v_2*rou_2*At)\n",
      "\n",
      "Nu_t=0.023*(Re_t)**(0.8)*(Pr_2)**0.4\n",
      "Nu_s=0.36*(Re_s)**(0.55)*(Pr_1)**(1/3.0)\n",
      "h_ti=Nu_t*kf_2/ID\n",
      "h_to=h_ti*ID/OD\n",
      "h_s=Nu_s*kf_1/De\n",
      "\n",
      "Uo=1/((1/h_to)+(1/h_s))\n",
      "R=(m_2*cp_2)/(m_1*cp_1)\n",
      "L=16\n",
      "Ao=Nt*math.pi*OD*L\n",
      "UoAo_mccp=(Uo*Ao)/(m_2*cp_2)\n",
      "S=0.58              #value of S from fig. 9.13 Ten Broeck graph corresponding to the value of (UoAo)/(McCpc)\n",
      "t2=S*(T1-t1)+t1\n",
      "T2=T1-R*(t2-t1)\n",
      "ft=0.029             #friction factor for raw water fom figure 6.14 corresponding to Reynolds Number calculated above\n",
      "fs=0.281             #friction factor for distilled water fom figure 6.14 corresponding to Reynolds Number calculated above\n",
      "\n",
      "V_t=(m_2/3600.0)/(rou_2*At)\n",
      "V_s=(m_1/3600.0)/(rou_1*As)\n",
      "\n",
      "gc=32.2\n",
      "dP_t=(rou_2*V_t**2)*((ft*L*Np/ID)+4*Np)/(2*gc)\n",
      "dP_s=((rou_1*V_s**2)*(fs*Ds*(Nb+1)))/(2*gc*De)\n",
      "\n",
      "print\"Outlet Temperatures of raw water is \",round(t2,1),\"F\"\n",
      "print\"Outlet Temperatures of distilled water is \",round(T2,1),\"F\"\n",
      "print\"\\nThe pressure drop for tube side is\",round(dP_t/147,1),\"psi\"\n",
      "print\"The pressure drop for shell side is\",round(dP_s/147,1),\"psi\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.6 Page No.492"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "m_1=170000 \t\t# mass flow rate in lbm/hr\n",
      "T1=110 \t\t\t# temperature in degree F\n",
      "cp_1=0.998\t\t # specific heat BTU/(lbm-degree Rankine) \n",
      "m_2=150000 \t\t# mass flow rate in lbm/hr\n",
      "t1=65 \t\t\t# temperature in degree F\n",
      "cp_2=0.9988\t                # specific heat BTU/(lbm-degree Rankine) \n",
      "Uo=350 \t\t\t# exchanger coefficient\n",
      "Ao=703.7\n",
      "mcp_raw=m_2*cp_2\n",
      "mcp_distilled=m_1*cp_1\n",
      "\n",
      "mcp_min_max=mcp_raw/mcp_distilled\n",
      "UA_mcpmin=(Uo*Ao)/(mcp_raw)\n",
      "effectiveness=0.58 \t\t#value of effectiveness from figure 9.15 corresponding to the above calculated values of capacitance ratio and (UoAo/mcp_min)\n",
      "qmax=mcp_raw*(T1-t1)\n",
      "q=effectiveness*qmax \t# actual heat transfer\n",
      "t2=(q/mcp_raw)+t1\n",
      "T2=T1-(q/mcp_distilled)\n",
      "\n",
      "print\"The Outlet temperature is Raw Water is\",round(t2,1),\"F\"\n",
      "print\"The Outlet temperature is disilled Water is\",round(T2,1),\"F\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Outlet temperature is Raw Water is 91.1 F\n",
        "The Outlet temperature is disilled Water is 87.0 F\n"
       ]
      }
     ],
     "prompt_number": 39
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.7 Page No. 499"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "rou_1= 0.852*62.4\t\t # density in lbm/ft**3 \n",
      "cp_1=0.509\t\t # specific heat BTU/(lbm-degree Rankine) \n",
      "v_1=0.404e-3 \t\t# viscosity in ft**2/s \n",
      "kf_1=0.08 \t\t# thermal conductivity in BTU/(hr.ft.degree Rankine) \n",
      "a_1=2.98e-3   \t# diffusivity in ft**2/hr \n",
      "Pr_1=490.0 \t\t# Prandtl Number \n",
      "m_1=39.8 \t\t  # mass flow rate in lbm/min\n",
      "T1=190.0\n",
      "T2=158.0\n",
      "rou_2= 0.0653\t\t # density in lbm/ft**3 \n",
      "cp_2=0.241\t\t # specific heat BTU/(lbm-degree Rankine) \n",
      "v_2= 20.98e-5 \t\t# viscosity in ft**2/s \n",
      "kf_2 = 0.01677 \t\t # thermal conductivity in BTU/(hr.ft.degree Rankine) \n",
      "a_2 = 1.066 \t\t# diffusivity in ft**2/hr \n",
      "Pr_2 = 0.706 \t\t# Prandtl Number \n",
      "m_2=67.0 \t\t\t# mass flow rate in lbm/min\n",
      "t1=126.0\n",
      "t2=166.0\n",
      "q_air=m_2*cp_2*60*(t2-t1)\n",
      "q_oil=m_1*cp_1*60*(T1-T2)\n",
      "\n",
      "import math\n",
      "LMTD=((T1-t2)-(T2-t1))/(math.log((T1-t2)/(T2-t1)))\n",
      "Area_air=(9.82*8)/144.0\n",
      "Area_oil=(3.25*9.82)/144.0\n",
      "\n",
      "S=(t2-t1)/(T1-t1)\n",
      "R=(T1-T2)/(t2-t1)\n",
      "F=0.87              #value of correction factor from figure 9.21a corresponding to above calculated values of S and R\n",
      "UA=q_air/(F*LMTD)\n",
      "mcp_air=m_2*cp_2*60\n",
      "mcp_oil=m_1*cp_1*60\n",
      "\n",
      "mcp_min_max=mcp_air/mcp_oil\n",
      "NTU=(UA/mcp_air)\n",
      "effectiveness=0.62 \t\t#effectiveness from fig 9.21b corresponding to the values of capacitance ratio \n",
      "t2_c=(T1-t1)*effectiveness+t1\n",
      "T2_c=T1-(mcp_air)*(t2_c-t1)/(mcp_oil)\n",
      "\n",
      "print\"The Overall Coefficient is \",round(UA,0),\" BTU/(hr. degree R)\"\n",
      "print\"Calculated outlet temprature are:\"\n",
      "print\"Outlet temprature for air\",round(t2_c,1),\"F\"\n",
      "print\"Outlet temprature for Engine Oil\",round(T2_c,0),\"F\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Overall Coefficient is  1602.0  BTU/(hr. degree R)\n",
        "Calculated outlet temprature are:\n",
        "Outlet temprature for air 165.7 F\n",
        "Outlet temprature for Engine Oil 158.0 F\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}