1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8: Natural Convection System"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.1 Page No. 413"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"rou= 0.0551 # density in Ibm/cu.ft \n",
"cp=0.2420 # specific heat BTU/(lbm-degree Rankine) \n",
"v= 27.88e-5 # viscosity in sq.ft/s \n",
"kf = 0.01944 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n",
"a = 1.457 # diffusivity in sq.ft/hr \n",
"Pr = 0.689 # Prandtl Number\n",
"T_inf=120.0+460.0 # wall temperature in degree R\n",
"Tw=400.0+460.0 # inside wall temperature in degree R\n",
"Beta=1/T_inf\n",
"\n",
"Beta_=0.00116\n",
"gc=32.2\n",
"L=1.0 # length of wall in ft\n",
"W=2.0 # width in ft\n",
"Gr=(gc*Beta_*(Tw-T_inf)*L**3)/v**2 # Grashof Number\n",
"temperature_slope=0.505 #temperature slope from table 8.1 \n",
"hL=(kf/L)*(4/3.0)*(Gr/4.0)**(1/4.0)*temperature_slope \n",
"A=L*W # cross sectional area in sq.ft\n",
"qw=hL*A*(Tw-T_inf)\n",
"\n",
"print\"The heat transferred is\",round(qw,0),\"BTU/hr\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat transferred is 558.0 BTU/hr\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.2 Page No. 414"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"rou1=1.295 # density in kg/cu.m\n",
"cp1=1005.5 # specific heat in J/(kg*K) \n",
"v1=12.59e-6 # viscosity in sq.m/s \n",
"Pr1=0.713 # Prandtl Number \n",
"kf1=0.02426 # thermal conductivity in W/(m.K)\n",
"a1=0.17661e-4 # diffusivity in sq.m/s \n",
"T_inf1=0 # inside and outside temperature in K\n",
"Beta1=1/(T_inf1+273.0) # volumetric thermal expansion coefficient at 295 K and 273 K\n",
"\n",
"rou2=1.177 # density in kg/cu.m\n",
"cp2=1005 # specific heat in J/(kg*K) \n",
"v2=15.68e-6 # viscosity in sq.m/s \n",
"Pr2=0.708 # Prandtl Number \n",
"kf2=0.02624 # thermal conductivity in W/(m.K)\n",
"a2=0.22160e-4 # diffusivity in sq.m/s \n",
"T_inf2=22.0 # inside and outside temperature in K\n",
"Beta2=1/(T_inf2+273.0) # volumetric thermal expansion coefficient at 295 K and 273 K\n",
"\n",
"g=9.81\n",
"t=0.005 # thickness of glass\n",
"L=0.60 # window length in m\n",
"k=0.81 # thermal conductivity of glass from appendix table B3\n",
"Tw1=18\n",
"Tw2=4\n",
"Ra1=(g*Beta1*(Tw2-T_inf1)*L**3)/(v1*a1)\n",
"hL1=(kf1/L)*(0.68+((0.67*((abs(Ra1)))**(1/4.0))/(1+(0.492/Pr1)**(9/16.0))**(4/9.0)))\n",
"Ra2=(g*Beta2*(Tw1-T_inf2)*L**3)/(v2*a2)\n",
"hL2=(kf2/L)*(0.68+((0.67*(abs(Ra2))**(1/4.0))/(1+(0.492/Pr2)**(9/16.0))**(4/9.0)))\n",
"q1=(T_inf1-T_inf2)/((1/hL2)+(t/k)+(1/hL1))\n",
"Tw2_=T_inf2-(q1/hL2)\n",
"Tw1_=q1/hL1+T_inf1\n",
"\n",
"Ra1_=3.7*10**8\n",
"hL1_=2.92\n",
"Ra2_=2.31*10**8\n",
"hL2_=2.80\n",
"q2=(T_inf2-T_inf1)/((1/hL2_)+(t/k)+(1/hL1_))\n",
"\n",
"Tw2final=q2-T_inf2\n",
"Tw1final=10.7\n",
"\n",
"print\"The heat loss is \",round(q2,1),\" W/sq.m\"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat loss is 31.2 W/sq.m\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.3 Page No.419"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"rou= 0.0735 # density in Ibm/cu.ft \n",
"cp=0.240 # specific heat BTU/(lbm-degree Rankine) \n",
"v= 16.88e-5 # viscosity in sq.ft/s \n",
"kf = 0.01516 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n",
"a = 0.859 # diffusivity in sq.ft/hr \n",
"Pr = 0.708 # Prandtl Number\n",
"Tw=90\n",
"T_inf=70\n",
"g=32.2\n",
"L=5.5 # length in ft\n",
"W=2+(4/12.0) # width in ft\n",
"Beta=1/(Tw+460.0) # volumetric thermal expansion coefficient in per degree Rankine\n",
"Ra=(g*Beta*(Tw-T_inf)*L**3)/(v*a/3600)\n",
"hc=(kf/L)*(0.825+((0.387*(Ra)**(1/6.0))/(1+(0.492/Pr)**(9/16.0))**(8/27.0)))**2\n",
"q=hc*L*W*(Tw-T_inf)\n",
"\n",
"print\"The heat gained is %d BTU/hr\",round(q,0),\"BTU/hr\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat gained is %d BTU/hr 142.0 BTU/hr\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.4 Page no. 421"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"rou= 1123 # density in kg/m^3 \n",
"cp= 1006.7 # specific heat in J/(kg*K) \n",
"v= 17.204e-6 # vismath.cosity in m^2/s \n",
"Pr =0.703 # Prandtl Number \n",
"kf= 0.02738 # thermal conductivity in W/(m.K)\n",
"a = 0.2446e-4 # diffusivity in m^2/s \n",
"g=9.81\n",
"L=5.0\n",
"theta=45\n",
"T_inf=20.0 # ambient air temperature in degree C\n",
"Tw=65 # roof surface temperature in degree C\n",
"Beta=1/(T_inf+273.0) # volumetric thermal math.expansion coefficient in per K\n",
"\n",
"import math\n",
"x=((3e5*math.exp(0.1368*math.cos(90-theta))*v*a)/(g*math.cos(theta)*Beta*(Tw-T_inf)))**(1/3.0)\n",
"x=0.051\n",
"print\"The Laminar-turbulent transition length by Vliet equation is \",round(x,3),\"m\\n\\n\"\n",
"lists=[0.02,0.04,0.051,0.051,0.1,1.0,3,5]\n",
"Ra=[0,0,0,0,0,0,0,0]\n",
"hc=[0,0,0,0,0,0,0,0]\n",
"print\"_______________________________________________________\"\n",
"print\"x(m)\\t\\tRaL\\t\\t\\thc(W/[m.K])\"\n",
"print\"_______________________________________________________\"\n",
"for i in range(0,8):\n",
" if lists[i]<x:\n",
" # Laminar Flow regime exists\n",
" Ra[i]=(g*math.cos(math.pi*45.0/180.0)*Beta*(Tw-T_inf)*lists[i]**3)/(v*a)\n",
" hc[i]=(kf/lists[i])*(0.68+(0.670*Ra[i]**(1/4.0))/(1+(0.492/Pr)**(9/16.0))**(4.0/9.0))\n",
" print lists[i],\"\\t\\t%.4g\"%Ra[i],\"\\t\\t%.3g\"%hc[i]\n",
" else:\n",
" # Turbulent Flow regime exists\n",
" Ra[i]=(g*Beta*(Tw-T_inf)*lists[i]**3)/(v*a)\n",
" hc[i]=(0.02738/lists[i])*(0.825+0.324*Ra[i]**(1/6.0))**2\n",
" print lists[i],\"\\t\\t%.4g\"%Ra[i],\"\\t\\t%.3g\"%hc[i]\n",
" \n",
"print\"\\n\\nNOTE:\\nCalculation mistake in book in calculation of Ral and hc,when x=0.04(2nd step in loop)\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Laminar-turbulent transition length by Vliet equation is 0.051 m\n",
"\n",
"\n",
"_______________________________________________________\n",
"x(m)\t\tRaL\t\t\thc(W/[m.K])\n",
"_______________________________________________________\n",
"0.02 \t\t2.025e+04 \t\t9.32\n",
"0.04 \t\t1.62e+05 \t\t7.52\n",
"0.051 \t\t4.749e+05 \t\t7.3\n",
"0.051 \t\t4.749e+05 \t\t7.3\n",
"0.1 \t\t3.58e+06 \t\t6.39\n",
"1.0 \t\t3.58e+09 \t\t4.99\n",
"3 \t\t9.667e+10 \t\t4.73\n",
"5 \t\t4.475e+11 \t\t4.66\n",
"\n",
"\n",
"NOTE:\n",
"Calculation mistake in book in calculation of Ral and hc,when x=0.04(2nd step in loop)\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.5 Page No. 424"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"rou= 0.0735 # density in lbm/cu.ft\n",
"cp=0.240 # specific heat BTU/(lbm-degree Rankine) \n",
"v= 16.88e-5 # viscosity in sq.ft/s \n",
"kf = 0.01516 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n",
"a = 0.859 # diffusivity in sq.ft/hr \n",
"Pr = 0.708 # Prandtl Number\n",
"Tw=100.0 # temperature of outside surface temperature of oven in degree F\n",
"T_inf=60.0 # ambient temperature in degree F\n",
"g=32.2\n",
"L=2.0 # length in ft\n",
"W=2.0 # width in ft\n",
"\n",
"Beta=1/(T_inf+460.0) # volumetric thermal expansion coefficient in per degree Rankine\n",
"Ra=(g*Beta*(Tw-T_inf)*L**3)/(v*a/3600.0)\n",
"hc=(kf/L)*(0.68+(0.670*Ra**(0.25))/(1+(0.492/Pr)**(9/16.0))**(4/9.0))\n",
"q1side=hc*L*W*(Tw-T_inf)\n",
"Lc=0.5\n",
"Ra_L=(g*Beta*(Tw-T_inf)*Lc**3)/(v*a/3600.0) # Rayleigh number based on characteristic length\n",
"hc_L=(kf/Lc)*0.54*(Ra_L)**(1/4.0)\n",
"qtop=hc_L*L*W*(Tw-T_inf)\n",
"\n",
"print\"The heat transferred from one side is \",round(q1side,1),\"BTU/hr\"\n",
"print\"The heat transferred from top is \",round(qtop,0),\"BTU/hr\"\n",
"\n",
"if qtop < q1side:\n",
" \n",
" print\"More heat is transfered from side\" \n",
"else:\n",
" print \"More heat is transfered top side\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat transferred from one side is 93.7 BTU/hr\n",
"The heat transferred from top is 138.0 BTU/hr\n",
"More heat is transfered top side\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.6 Page No.427"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"rou= 1.177 # density in kg/cu.m\n",
"cp= 1005.7 # specific heat in J/(kg*K) \n",
"v= 15.68e-6 # viscosity in sq.m/s \n",
"Pr =0.708 # Prandtl Number \n",
"kf=0.02624 # thermal conductivity in W/(m.K)\n",
"a=0.22160e-4 # diffusivity in sq.m/s \n",
"g=9.81\n",
"L=4.0 # length in m\n",
"D=15/100.0 # diameter in m\n",
"T_inf=5.0 # ambient air temperature in degree C\n",
"Tw=50.0 # outside surface temperature in degree C\n",
"\n",
"import math\n",
"Beta=1/(T_inf+273.0) # volumetric thermal expansion coefficient in per K\n",
"Ra=(g*Beta*(Tw-T_inf)*D**3)/(v*a)\n",
"hc_h=(kf/D)*(0.60+(0.387*Ra**(1/6.0))/(1+(0.559/Pr)**(9/16.0))**(8/27.0))**2\n",
"As=math.pi*D*L\n",
"q_hor=hc_h*As*(Tw-T_inf)\n",
"hc_v=(kf/D)*0.6*(Ra*(D/L))**(1/4.0)\n",
"q_ver=hc_v*As*(Tw-T_inf)\n",
"q=round(q_ver,0)+round(q_hor,0)\n",
"\n",
"print\"The heat transferred from the horizontal length of 4 m is \",round(q_hor,0),\"W\"\n",
"print\"The heat transferred from the vertical length of 4 m is \",round(q_ver,0),\"W\"\n",
"print\"nThe total heat lost from the pipe is \",round(q,2),\"W\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat transferred from the horizontal length of 4 m is 477.0 W\n",
"The heat transferred from the vertical length of 4 m is 246.0 W\n",
"nThe total heat lost from the pipe is 723.0 W\n"
]
}
],
"prompt_number": 52
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.7 Page No. 430"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"rou= 0.0809 # density in lbm/cu.ft \n",
"cp=0.240 # specific heat BTU/(lbm-degree Rankine) \n",
"v= 13.54e-5 # viscosity in sq.ft/s \n",
"kf = 0.01402 # thermal conductivity in BTU/(hr.ft.degree Rankine) \n",
"a = 0.685 # diffusivity in sq.ft/hr \n",
"Pr = 0.712 # Prandtl Number\n",
"Tw=0 # temperature of outside surface temperature of oven in degree F\n",
"T_inf=70.0 # ambient temperature in degree F\n",
"g=32.2\n",
"Beta=1/(T_inf+460.0) # volumetric thermal expansion coefficient in per degree Rankine\n",
"Lc=1/((1/1)+(1/1.2))\n",
"Ra=(g*Beta*abs(Tw-T_inf)*Lc**3)/(v*a/3600.0)\n",
"hc=(kf/Lc)*0.6*(Ra)**(1/4.0)\n",
"\n",
"print\"The value of convection coefficient is \",round(hc,2),\"BTU/(hr.sq.ft.degree R)\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of convection coefficient is 1.11 BTU/(hr.sq.ft.degree R)\n"
]
}
],
"prompt_number": 54
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.8 Page No.433"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"rou= 0.998 # density in kg/cu.m\n",
"cp= 1009.0 # specific heat in J/(kg*K) \n",
"v= 20.76e-6 # viscosity in sq.m/s \n",
"Pr =0.697 # Prandtl Number \n",
"kf= 0.03003 # thermal conductivity in W/(m.K)\n",
"a = 0.2983e-4 # diffusivity in sq.m/s \n",
"g=9.81\n",
"T_inf=35 # ambient air temperature in degree C\n",
"Tw=100 # surface temperature in degree C\n",
"Beta=1/(T_inf+273.0) # volumetric thermal expansion coefficient in per K\n",
"rou_Al=2702 # density in kg/cu.m\n",
"k_Al=236 # thermal conductivity in W/(m.K)\n",
"cp_Al=896 # specific heat in J/(kg*K) \n",
"a_Al=97.5e-6 # diffusivity in sq.m/s \n",
"b=46/100.0\n",
"w=24/100.0\n",
"\n",
"zeta=((w*v**2)/(g*Beta*(Tw-T_inf)*Pr))**(1/4.0)\n",
"L=1.54*(k_Al/kf)**(1/2)*zeta\n",
"S=2.89*zeta\n",
"q=(b*w*(Tw-T_inf)*1.3*(k_Al*kf)**(1/2.0))/(6*zeta)\n",
"N=b/(2*S)\n",
"\n",
"print\"The heat transfer rate is \",round(q,0),\"W\"\n",
"print\"The number of fins can be atmost\",round(N,0)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat transfer rate is 1423.0 W\n",
"The number of fins can be atmost 27.0\n"
]
}
],
"prompt_number": 59
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|