summaryrefslogtreecommitdiff
path: root/Engineering_Heat_Transfer/CHAPTER12.ipynb
blob: 1d32142cd838b47fec81863cd9bb29960d0d75cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
{
 "metadata": {
  "name": "CHAPTER12"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 12: Radient Heat Transfer between Surfaces"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.3 Page No 598"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#  Determination of the heat transferred by radiation from dA1 to A. \n",
      "\n",
      "#Given\n",
      "# The view factor Fd1_2 can be calculated as Fd1_2=Fd1_3+Fd1_4+Fd1_5\n",
      "# For Fd1_3\n",
      "a_13=100.0\n",
      "b_13=250.0\n",
      "c_13=100.0\n",
      "X_13=a_13/c_13\n",
      "Y_13=b_13/c_13\n",
      "Fd1_3=0.17      # value for Fd1_3 corresponding to above calculated values of a/c and b/c\n",
      "# For Fd1_4\n",
      "a_14=300\n",
      "b_14=50\n",
      "c_14=100\n",
      "\n",
      "#Calculation\n",
      "X_14=a_14/c_14\n",
      "Y_14=b_14/c_14\n",
      "Fd1_4=0.11       #value for Fd1_4 corresponding to above calculated values of a/c and b/c\n",
      "# For Fd1_5\n",
      "a_15=100\n",
      "b_15=50\n",
      "c_15=100\n",
      "X_15=a_15/c_15\n",
      "Y_15=b_15/c_15\n",
      "Fd1_5=0.09       #value for Fd1_3 corresponding to above calculated values of a/c and b/c\n",
      "Fd1_2=Fd1_3+Fd1_4-Fd1_5\n",
      "sigma=0.1714e-8  # Stefan-Boltzmann constant\n",
      "T1=660\n",
      "T2=560\n",
      "q12_A1=sigma*Fd1_2*(T1**4-T2**4)\n",
      "\n",
      "#result\n",
      "print\"The net heat transferred is \",round(q12_A1,1),\"BTU/(hr.sq.ft)\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The net heat transferred is  29.8 BTU/(hr.sq.ft)\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.4 Page No 601"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Determination of the heat transferred to the conveyed parts for the conditions given\n",
      "\n",
      "#Given\n",
      "import math\n",
      "L1=1\n",
      "angle=math.pi*45/180.0\n",
      "L2=L1*math.sin(angle)\n",
      "L3=L2\n",
      "T1=303\n",
      "T2=473\n",
      "\n",
      "#Calculation\n",
      "sigma=5.67e-8      # Stefan-Boltzmann constant\n",
      "q21_A2=sigma*(T2**4-T1**4)*((L1/L2)+1-(L3/L2))/2.0\n",
      "q31_A3=sigma*(T2**4-T1**4)*((L1/L2)-1+(L3/L2))/2.0\n",
      "\n",
      "#result\n",
      "print\"The heat transferred from A3 to A1 is \",round(q31_A3,0),\" W/sq.m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The heat transferred from A3 to A1 is  1669.0  W/sq.m\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.5 Page No 605"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#  Determination of the heat exchanged between the two plates\n",
      "\n",
      "#Given\n",
      "# The view factor can be found with the crossed-string method\n",
      "# from figure 12.13(b)\n",
      "ac=1\n",
      "bd=1\n",
      "ad=(9+1)**0.5\n",
      "bc=ad\n",
      "\n",
      "#calculation\n",
      "crossed_strings=ad+bc\n",
      "uncrossed_strings=ac+bd\n",
      "L1_F12=(1/2.0)*(crossed_strings-uncrossed_strings)\n",
      "L1=3\n",
      "F12=L1_F12/L1\n",
      "sigma=5.67e-8 # Stefan-Boltzmann constant\n",
      "T1=560\n",
      "T2=460\n",
      "q12_A1=sigma*(T1**4-T2**4)*F12\n",
      "\n",
      "#Result\n",
      "print\"The heat transfer rate is \",round(q12_A1,0),\"W/sq m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The heat transfer rate is  2189.0 W/sq m\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.6 Page No 608"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#  Determination of the heat that must be supplied to each of the isothermal surfaces, and also the temperature of the insulated surface. \n",
      "\n",
      "#Given\n",
      "# we can apply the equations as follows\n",
      "# q1=sigma*A1*[(T1**4-T2**4)F12+(T1**4-T3**4)F13]..... (1)\n",
      "# q2=sigma*A2*[(T2**4-T1**4)F21+(T2**4-T3**4)F23]..... (2)\n",
      "# q3=sigma*A3*[(T3**4-T1**4)F31+(T3**4-T2**4)F32]..... (3)\n",
      "# given data:\n",
      "T1=1000.0\n",
      "T3=500.0\n",
      "q2=0\n",
      "F12=1/2.0\n",
      "F13=1/2.0\n",
      "F21=1/2.0\n",
      "F23=1/2.0\n",
      "F31=1/2.0\n",
      "F32=1/2.0\n",
      "\n",
      "#Calculation\n",
      "T2=((T1**4+T3**4)/2.0)**(1/4.0) # using equation (2)\n",
      "sigma=0.1714e-8                 # Stefan-Boltzmann constant\n",
      "q1_A1=sigma*((T1**4-T2**4)*F12+(T1**4-T3**4)*F13) # using equation (1)\n",
      "q3_A3=sigma*((T3**4-T1**4)*F31+(T3**4-T2**4)*F32) # using equation (3)\n",
      "\n",
      "#result\n",
      "print\"The temperature is \",round(T2,1),\"R\"\n",
      "print\"The heat flux through area A1 is\",round(q1_A1,0),\"BTU/(hr.sq.ft)\"\n",
      "print\"The heat flux through area A3 is\",round(q3_A3,0),\"BTU/(hr.sq.ft)\"\n",
      "print\"In the book there is calculation mistake\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The temperature is  853.7 R\n",
        "The heat flux through area A1 is 1205.0 BTU/(hr.sq.ft)\n",
        "The heat flux through area A3 is -1205.0 BTU/(hr.sq.ft)\n",
        "In the book there is calculation mistake\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.7 Page No 613"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Determination of the heat lost by the oven through its top surface. \n",
      "\n",
      "#Given\n",
      "# all energy leaving A1 is intercepted by A2 and vice versa\n",
      "F12=1\n",
      "F21=1\n",
      "F11=0             # the surfaces are flat\n",
      "F22=0\n",
      "emissivity1=0.94  # for oxidized steel from appendix table E1\n",
      "emissivity2=0.94\n",
      "T1=533\n",
      "T2=323\n",
      "sigma=5.67e-8      # Stefan-Boltzmann constant\n",
      "\n",
      "#Calculation\n",
      "q1=(sigma*(T1**4-T2**4))/((1/emissivity1)+(1/emissivity2)-1)\n",
      "q2=-q1\n",
      "\n",
      "#Result\n",
      "print\"The heat lost through bottom surface is \",round(q1,1),\"W/sq m\"\n",
      "print\"The heat lost through top surface is \",round(q2,1),\"W/sq m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The heat lost through bottom surface is  3510.7 W/sq m\n",
        "The heat lost through top surface is  -3510.7 W/sq m\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.8 Page No 616"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Determination of the net heat exchanged between the dish and the surroundings by radiation at the instant the dish is removed from the oven. Perform the calculations (a) if the dish and surroundings behave like black bodies, and again (b) if the dish has an emissivity of 0.82 and the surroundings have an emissivity of 0.93.\n",
      "\n",
      "#Given\n",
      "D=1.0           # diameter in ft\n",
      "L=6/12.0        # length in ft\n",
      "\n",
      "#Calculation\n",
      "A=2*math.pi*D**2/4+math.pi*D*L\n",
      "F12=1           # the view factor between the dish and the surroundings is unity\n",
      "T1=810\n",
      "T2=530\n",
      "sigma=0.1714e-8 # Stefan-Boltzmann constant\n",
      "q1=sigma*A*(T1**4-T2**4)*F12\n",
      "\n",
      "# For gray-surface behavior, we can apply the following Equation\n",
      "# q1/(A1e1)-[F11*(q1/A1)*(1-e1)/e1+F12*(q2/A2)*(1-e2)/e2]=sigma*T1**4-(F11*sigma*T1**4+F12*sigma*T2**4)... equation (1)\n",
      "F11=0\n",
      "e1=0.82\n",
      "e2=0.93\n",
      "# putting q2/A2=0 in equation (1) as A2 tends to infinity\n",
      "q1_=A*e1*(sigma*T1**4-F12*sigma*T2**4)\n",
      "\n",
      "#Result\n",
      "print\"(a)The heat exchanged between the dish and the surroundings is\",round(q1,0),\"BTU/hr\"\n",
      "print\"(b)The heat exchanged between the dish and the surroundings for the second case is \",round(q1_,0),\"BTU/hr\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The heat exchanged between the dish and the surroundings is 1893.0 BTU/hr\n",
        "(b)The heat exchanged between the dish and the surroundings for the second case is  1552.0 BTU/hr\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}