1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
{
"metadata": {
"name": "CHAPTER10"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 10: Condensation and Vaporization Heat Transfer"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 10.1 Page NO.527"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of the heat-transfer rate and the amount of steam condensed\n",
"\n",
"#Given\n",
"# properties of engine oil at (328 + 325)/2 = 326.5 degree F = 320\u00b0F from appendix table C11\n",
"rou_f=0.909*62.4 # density in lbm/ft**3 \n",
"cp=1.037 # specific heat BTU/(lbm-degree Rankine) \n",
"v_f=0.204e-5 # viscosity in ft**2/s \n",
"kf=0.393 # thermal conductivity in BTU/(lbm.ft.degree Rankine) \n",
"a=6.70e-3 # diffusivity in ft**2/hr \n",
"Pr=1.099 # Prandtl Number \n",
"V_v=4.937 # specific volume in ft**3/lbm from superheated steam tables\n",
"rou_v=1/V_v # vapour density\n",
"g=32.2\n",
"hfg=888.8 # from saturated steam tables\n",
"Tg=327.81\n",
"Tw=325\n",
"L=2.0 # length in ft\n",
"W=3.0 # width in ft\n",
"z=0.204*10**-5 # distance from entry of plate in ft\n",
"\n",
"#Calculation\n",
"# film thickness is given as follows\n",
"y=((4*kf*v_f*(Tg-Tw)/3600.0)/(rou_f*g*hfg*(1-(rou_v/rou_f))))**(1/4.0) #let y=delta/z**(1/4)\n",
"hz=1665 #From Table 10.1\n",
"hL=(4/3.0)*hz # at plate end\n",
"mf=(hL*L*W*(Tg-Tw))/hfg\n",
"q=mf*hfg\n",
"Re=(4*mf/3600)/(W*rou_f*v_f)\n",
"\n",
"#Result\n",
"print\"The amount of steam condensed is \",round(mf,1),\"lbm/h\"\n",
"print\"The heat transfer rate is \",round(q,0),\"BTU/hr\"\n",
"\n",
"#plot\n",
"import matplotlib.pyplot as plt\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"\n",
"x1=[0.0017,0.0018,0.0023,0.0030,0.0035]\n",
"z1=[2,1.6,0.6,0.3,0.1]\n",
"\n",
"x2=[0.0023,0.0022,0.0017,0.0011,0.0006,0]\n",
"z2=[2,1.6,0.6,0.3,0.1,0]\n",
"\n",
"xlabel(\"d (m)\") \n",
"ylabel(\"z (m)\") \n",
"plt.xlim((0,0.004))\n",
"plt.ylim((2,0))\n",
"\n",
"ax.annotate('(infinity)', xy=(0.0035,0.1))\n",
"ax.annotate('(hl=2220)', xy=(0.0005,1.7))\n",
"a1=plot(x1,z1)\n",
"a1=plot(x2,z2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The amount of steam condensed is 42.1 lbm/h\n",
"The heat transfer rate is 37429.0 BTU/hr\n"
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEMCAYAAAA8vjqRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVPX+B/D3gICh5JI/UcFEAUEEBshEc8PUa27c3H6u\nN7HNaDFbbLv+DL1JWlo3skxbJNPHLOu6S91SLG8iLmiapqggizqh5hW8xfr9/UHMBZmBmWHOnO39\neh6eR2bOmflwonnzPd/zOV+DEEKAiIjIDm5yF0BEROrD8CAiIrsxPIiIyG4MDyIishvDg4iI7Mbw\nICIiu0kaHmlpaQgNDUVwcDCWLFlicZvZs2cjODgYRqMRWVlZUpZDREROIll4VFZW4vHHH0daWhpO\nnDiB9evX4+TJk3W22bFjB86cOYPs7GysWrUKiYmJUpVDREROJFl4ZGZmIigoCAEBAfDw8MDkyZOx\nefPmOtts2bIFM2bMAADExsbi2rVrMJlMUpVEREROIll4FBYWonPnzubv/f39UVhY2Og2BQUFUpVE\nRERO0kyqFzYYDDZtd/PdUSztZ+trERFRXVLdgUqykYefnx/y8/PN3+fn58Pf37/BbQoKCuDn52fx\n9YQQEEKgqqoKPxf9jNVZq/Hw1ocR8W4EWixqgX4f9sOzXz+LL058gQvXL5i3d+XXyy+/LMv7arFO\nNdTIOlmn0r+kJNnIo1evXsjOzkZubi46deqEDRs2YP369XW2iY+Px/LlyzF58mRkZGSgdevW8PX1\nbfB1DQYDQtqFIKRdCBKiEgAA10uvI7MwExkFGfgw60M8tPUh+Hj6oG/nvujr3xd9/PsgqkMUPN09\npfpxiYh0RbKRR7NmzbB8+XIMHz4cYWFhmDRpEnr06IGVK1di5cqVAICRI0eiW7duCAoKwqxZs/Du\nu+869F63et2Kod2GYt7Aedg+dTsuz72Mr6Z/heGBw/FT0U94cMuDaLukLfp/1B9z/zkXX578EheL\nLzrzxyUinSktLcWgQYNw4cIFTJw4sdHtP//8c4SFhWHIkCE4dOgQnnzyyUb36devHwDg/Pnz9f74\ntmTLli3429/+1njxTmAQUo9tnMBgMDR5CFZ7dLKvYB8yCjKcPjpJT09HXFxck+p0BTXUqYYaAdbp\nbGqq89y5c7hy5Qrmzp1r0z733HMP5s+fj7vuusuh91u2bBm2bt3a4HZCCERHR+PAgQPw8PBwymen\nNboJj5sJIXD6ymnsK9hX/ZW/D+d+PYeoDlHmQOnr3xcdfTo69X2JSBuGDRuGd955B56enhgzZgyO\nHTuG1NRUbNmyBb/99hvOnj2LsWPHYsmSJVi4cCFef/11+Pn5IT4+HqNGjcLSpUuxdetWJCUlIS8v\nDzk5OcjLy8OcOXPwxBNPAABatmyJkpIS9OnTBz///DO6du2KGTNm4B//+AdSUlJgNBoBAP3798eK\nFSsQERGBxMREjB49GqNGjZI0PCSb81A6R+ZO+vr3hbGDkXMnRDpXWVmJ48ePo3v37sjNza3z3NGj\nR3HkyBF4enoiJCQEs2fPxvz587F7924sW7YMMTExSE9Pr7PP6dOnsXv3bly/fh0hISF49NFH4e7u\nbr7SdMmSJeawAYC2bdsiNTUVb775Jk6fPo3S0lJEREQAAHr37o3vvvsOo0aNkvQY6DY8LKmZOxna\nbSiA+qOTDw5/wNEJEeHy5cvw8fGx+NyQIUPMz4WFheH8+fNWryIFqv+QHTVqFDw8PHDbbbehffv2\nMJlM6NSpk3mbm0cPEyZMwN/+9je8/vrr+OijjzBz5kzzc506dUJaWlpTfjybMDwawNEJEVlj7XSQ\nl5eX+d/u7u6oqKho9LU8Pf/7eWHLPt7e3hg2bBg2bdqEzz//HIcPHzY/V1VV5ZLeOIaHnTg6IaJ2\n7dqhpKTEKa9ly5yEj48PiouL6zz24IMPYvTo0Rg0aBBatWplfvzixYvo0qWLU2prCG/J3kQ1o5OE\nqASsHL0SPyb+iAvPXEBSXBJaebXCh1kfInxFOAL+HoCnvnoKv9z4Re6SichBp08D//u/wOHD7ggP\nD8epU6cA/PcuGAaDwaa/+mtv19A+NY8bjUa4u7sjKioKb731FgAgJiYGrVq1qnPKCqi+r+DAgQMd\n+wHtoNurrVxJCIFTV07h3QPvYt2xdXii9xN4pu8z8PGyfM6UiJSlsBBYuBD44gvgmWeA2bOBzz9P\nhclkwvPPPy9LTRcuXMDgwYPNAQZUn7KKiYnBwYMH0axZM0k/OznycAGDwYDQdqFIGZGCgw8dxNlf\nzyL47WC8lfEWSitK5S6PiKz49VfghReAyEigVavqkceLLwItWgBTp07F9u3bZfnDds2aNejTpw+S\nk5PrPL5t2zZMmDABzZpJPyPBkYdMfjT9iJe+fQnHfzmOhYMXYlrENLi7uctdFhEB+M9/gLffBpYu\nBe69F3j5ZeCmW/OpApsENRgeNb4//z1e+PYFXC+9jleHvIpRwaN4F2EimZSXA6tXV5+i6tMHeOUV\nIDRU7qocx/DQcHgA1XMiW09vxUvfvoTWzVtj8dDF6H97f7nLItINIYCNG4F58wA/P2DxYqB3b7mr\najqGh8bDo0ZlVSXW/rgW89PnI9I3Esl3JyPCN0Lusog07Ztvquc1qqqqQ2PYMEArg3+Gh07Co0Zp\nRSlWHFyBV/e+iuGBw7Fw8EIEtA6QuywiTTl4sHryOze3+vTUxImAm8YuIeLVVjrj1cwLc/rMQfYT\n2ejapivuWHUH5qTNQdGNIrlLI1K9ml6N+Hhg/HjgxAlg0iTtBYfUeLgU7FavW7EgbgFOPnYSVaIK\nPd7pgQXpC1BcWtz4zkRUR2EhMGsWcNddQHQ0kJ0NPPII4OEhd2XqxPBQgfYt2iNlRAoOPHQAZ349\ng+C3g5GyP4U9IkQ2aKhXgxzH8FCRrm264pOxn+Drv3yNr89+jdB3QvHJ0U9QWVUpd2lEivOf/wBL\nlgDduwNXrgBHjwKvvQa0bSt3ZdrACXMVq+kRKS4tRvKQZPaIEEF7vRpNwautGB5W1e4RaXNLGywe\nshj9bu8nd1lELqfVXo2mYHgwPBpVu0fE6GvEorsXsUeEdEPLvRpNwfBgeNisdo/IPUH3YEHcAvaI\nkGbpoVejKdjnQTar0yPSuit6rerFHhHSHPZqyI+HWqNu9boVSXFJOPHYCQgI9oiQJrBXQzkYHhrX\nvkV7vHXPWzjw0AHzOiLsESG1qenViIio7tU4dYq9GnJjeOhE1zZdsWbsGvaIkKrU7tW4fBn48cfq\nXo3bbpO7MuKEuU6xR4SUrHavRmwssGiRfns1moJXWzE8JCGEwLbT2/Dity+yR4QUgb0azsXwYHhI\nqrKqEuuOrcP83dXriLw+7HWEtAuRuyzSmd27gblz2avhTAwPhodLlFaU4p0D7+DVva/ihX4vYE6f\nOVxXnSR35kx1aBw5Arz6avUluLzk1jkYHgwPlzr36zncv/l+lFWWYfWfV3MUQpL497+rG/tWrwae\nfRaYMwdo3lzuqrSFTYLkUt3adMOuGbswLWIa+q/uj2U/LONVWeQ0lZXAqlVASAhw9Spw7Fj1ZbgM\nDnXhyIMaxFEIOdOuXcBTT1X3avz970BMjNwVaRtHHiQbjkLIGc6cAcaOBR54APi//wP27GFwqB1H\nHmQzjkLIXpzXkBdHHqQIHIWQrTivoX0ceZBDOAohazivoRwceZDicBRCN+O8hr5w5EFNxlGIvnFe\nQ7k48iBF4yhEnzivoW8ceZBTcRSiD5zXUAeOPEg1OArRNs5rUA2OPEgyHIVoB+c11IkjD1IljkLU\nj/MaZA1HHuQSHIWoD+c11I8jD1I9jkLUg/MaZAuOPMjlOApRJs5raA9HHqQpHIUoC+c1yBGShkda\nWhpCQ0MRHByMJUuW1Hs+PT0drVq1QnR0NKKjo/HKK69IWQ4piJvBDY/1fgz7H9yPrae3YsDqATh1\n+ZTcZenOrl3Vp6TWrgV27AA+/BDo2FHuqkgVhEQqKipEYGCgyMnJEWVlZcJoNIoTJ07U2Wb37t1i\nzJgxjb6WhGWSAlRWVYrl+5eLdq+1E0v/tVRUVFbIXZLmZWcLce+9QgQECPH550JUVcldEUlBys9O\nyUYemZmZCAoKQkBAADw8PDB58mRs3rzZUnhJVQKpBEchrvPvfwNz5wJ9+gCxscDJk8CECYDBIHdl\npDbNpHrhwsJCdO7c2fy9v78/9u/fX2cbg8GAH374AUajEX5+fli6dCnCwsIsvl5SUpL533FxcYiL\ni5OibJJRzVzIigMr0H91f7zQ7wXM6TMH7m7ucpemepWV1aek5s8HRo2qntfg6SntSU9PR3p6ukve\nS7Krrb744gukpaXh/fffBwCsXbsW+/fvx9tvv23epri4GO7u7vD29sbOnTvx5JNP4vTp0/WL5NVW\nusMrspyH/Rr6pcqrrfz8/JCfn2/+Pj8/H/7+/nW28fHxgbe3NwBgxIgRKC8vx9WrV6UqiVSEV2Q1\nHfs1SEqShUevXr2QnZ2N3NxclJWVYcOGDYiPj6+zjclkMqdiZmYmhBBo27atVCWRynAuxDGc1yBX\nkCw8mjVrhuXLl2P48OEICwvDpEmT0KNHD6xcuRIrV64EAGzcuBERERGIiorCnDlz8Omnn0pVDqkY\nRyG2Yb8GuRI7zElVOBdiGec1yBJVznkQSYGjkLo4r0Fy4ciDVEvPoxDeh4pswZEHkQV6HIVwXoOU\ngiMP0gQ9jEI4r0H24siDqBFaHoVwXoOUiCMP0pxzv57DzM0zEfY/YVgxaoXc5TTJTz8BAwdW921w\nXoPsJeVnJ8ODNMlUYkLI8hAUPF2Alp4t5S7HYU8/DXh7V0+OE9mLp62I7OTb0hcDuwzExhMb5S7F\nYeXlwLp1wIwZcldCVB/DgzQrISoBqUdS5S7DYTt3AsHB1V9ESsPwIM0a3X00fir6Ced+PSd3KQ5J\nTQUSEuSugsgyhgdplqe7J6aET8Gao2vkLsVuRUXVl+ZOnCh3JUSWMTxI0xKiEvDx0Y9RJarkLsUu\n69cDo0dX93QQKRHDgzQtukM0fDx98N357+QuxS48ZUVKx/AgTTMYDKqbOD96FLh8GRg8WO5KiKxj\neJDmTYuYhk0/b0JJWYncpdjk44+B++4D3Ll0OykYw4M0T009H+ztILVgeJAuqOXUFXs7SC0YHqQL\naun54EQ5qQXDg3RBDT0f7O0gNWF4kG4oveeDvR2kJgwP0g2l93zwlBWpCcODdEPJPR/s7SC1YXiQ\nrii154O9HaQ2DA/SFSX2fLC3g9SI4UG6o7RTV+ztIDVieJDuKK3ngxPlpEYMD9IdJfV8sLeD1Irh\nQbqklJ4P9naQWjE8SJeU0vPBU1akVgwP0iUl9Hywt4PUjOFBuiV3zwd7O0jNGB6kW3L2fLC3g9SO\n4UG6JtepK/Z2kNoxPEjX5Or54EQ5qR3Dg3RNjp4P9naQFjA8SPdc3fPB3g7SAoYH6Z6rez54yoq0\ngOFBuufKng/2dpBWNBgehw8fxty5cxEbGwtfX1906NABsbGxmDt3LrKyslxVI5HkXNXzwd4O0gqD\nEEJYemLkyJFo06YN4uPj0bt3b3Ts2BFCCFy8eBGZmZnYunUrrl27hu3bt0tfpMEAK2USOU38+niM\n6zEOCVEJkrx+eTng7w/s3ctLdMk1pPzstBoeJpMJvr6+De78yy+/oH379pIUVhvDg1zhy5NfImV/\nCtIT0iV5/S1bgNdeqw4PIleQ8rPT6mmrm4Pj+vXruHr1qvkLgEuCg8hVpO754EQ5aYnVkUeNlStX\n4uWXX4aXlxfc3KqzxmAw4Nw51zVVceRBrjJ752y0vaUtkuKSnPq6RUXVp6rOn+cluuQ6spy2qhEU\nFISMjAy0a9dOkgJswfAgVzl88TDGfzYeZ2efhZvBeRcjpqQAmZnA2rVOe0miRsly2qpGt27dcMst\nt0jy5kRKI1XPB09ZkdY0a2yDxYsXo2/fvujbty88PT0BVKdZSkqK5MURuVrtno+4gDinvCZ7O0iL\nGg2Phx9+GEOHDkVERATc3NwghIDBYHBFbUSymBYxDQv3LERJWQlaerZs8uuxt4O0qNE5j+joaIcb\nAu+//35s374d7du3x7FjxyxuM3v2bOzcuRPe3t5ITU1FdHR0/SI550Eu5qyeD/Z2kJxknfMYMWIE\nVq5ciYsXL9a7VLcxM2fORFpamtXnd+zYgTNnziA7OxurVq1CYmKi7ZUTSchZtyvhuh2kVY2OPAIC\nAuqdprLnUt3c3FyMGTPG4sjjkUceweDBgzFp0iQAQGhoKPbs2VOvx4QjD3K1ssoy+L3hh/0P7ke3\nNt0cfp1x44CRI4EHH3RicUQ2kvKzs9E5j9zcXEneGAAKCwvRuXNn8/f+/v4oKCiw2NmelJRk/ndc\nXBzi4uIkq4uo9jofjvZ81KzbsXq1c2sjsiY9PR3p6ekueS+r4ZGent7oB/Tu3bsxuImXkNycitYm\n42uHB5ErJEQlYPxn4zF/0HyHej64bge52s1/WC9YsECy97IaHtu2bcNzzz2HoUOHolevXujYsSOq\nqqpw6dIlHDx4EN988w0GDx7cpPDw8/NDfn6++fuCggL4+fk5/HpEzlS758ORy3ZTU6vvZUWkRVbD\nY+nSpSguLsbmzZvxz3/+E+fPnwcAdOnSBf3798df//pXtGzZtMsY4+PjsXz5ckyePBkZGRlo3bp1\nozdjJHKVpvR8sLeDtK7RCfOmmDJlCvbs2YPLly/D19cXCxYsQHl5OQBg1qxZAIDHH38caWlpaNGi\nBVavXo2YmJj6RXLCnGRiKjEhZHkICp4usKvn4+mnAW9v4JVXJCyOqBGy3ttKCRgeJCd7ez7Y20FK\nIWufB5He2dvzwd4O0gOGB1Ej7F3ngzdBJD1geBA1onbPR2NqejsmTnRBYUQyYngQ2SAhKgEfH/0Y\nVaKqwe3Y20F6wfAgsoGt63zwlBXpRaPhcffdd2P79u11Hnv44YclK4hIiWr3fFjD3g7Sk0bDIycn\nB0uWLKnT5n7gwAFJiyJSomkR07Dp500oKSux+DzX7SA9aTQ8WrdujV27dsFkMmHMmDG4du2aK+oi\nUhzflr4Y2GUgNp7YWO+58nJg3TpgxgwZCiOSgU1zHs2aNcO7776L8ePHY8CAASgqKpK6LiJFsnbq\nir0dpDeNhscjjzxi/ndCQgJSU1Pxpz/9SdKiiJTKWs8HJ8pJb3h7EiI7zd45G21vaWte56OoqHrE\ncf48L9ElZeHtSYgU5OaeD/Z2kB4xPIjsdHPPB09ZkR4xPIjsVLvng70dpFec8yByQM06H9N/KUBr\n75Zct4MUiXMeRArj29IXA24fiDUHN7K3g3SJ4UHkoPCKBBiiU9nbQbrE8CBy0MnNo1HVzvZ1Poi0\nhOFB5ICiIiD9W09Mi7RtnQ8irWF4EDmgprfj4d62rfNBpDUMDyIH1PR22LrOB5HWMDyI7FS7t8OW\ndT6ItIjhQWSnm9ftaGydDyItYngQ2cHSuh0NrfNBpFUMDyI7WFu3g6euSG8YHkR2sHYTRGvrfBBp\nFcODyEZFRcCuXcDEifWf83T3xJRw9nyQfjA8iGzU2LodN6/zQaRlDA8iGzW2bgd7PkhPGB5ENrBl\n3Q72fJCeMDyIbHBzb4c17PkgvWB4EDXCUm+HNez5IL1geBA1wlpvhzU8dUV6wPAgakRjE+U3Y88H\n6QHDg6gBDfV2WMOeD9IDhgdRAxrr7bCGPR+kdQwPogbYe8qqBns+SOsYHkRW2NLbYQ17PkjrGB5E\nVtja22ENez5IyxgeRBbY09thDXs+SMsYHkQW2NvbYQ1PXZFWMTyILHB0ovxm7PkgrWJ4EN3Ekd4O\na9jzQVrF8CC6iaO9Hdaw54O0iOFBdBNnnbKqwZ4P0iKGB1EtTentsIY9H6RFDA+iWpra22ENez5I\nayQNj/vvvx++vr6IiIiw+Hx6ejpatWqF6OhoREdH45VXXpGyHKIGOaO3wxr2fJDWSBoeM2fORFpa\nWoPbDBo0CFlZWcjKysK8efOkLIeoQc7q7bCGp65ISyQNjwEDBqBNmzYNbiOEkLIEIps5e6L8Zuz5\nIC1pJuebGwwG/PDDDzAajfDz88PSpUsRFhZmcdukpCTzv+Pi4hAXF+eaIkkXano7Vq+W7j1q93wk\nxSVJ90akW+np6UhPT3fJexmExH/65+bmYsyYMTh27Fi954qLi+Hu7g5vb2/s3LkTTz75JE6fPl2/\nSIOBIxSSVEoKkJkJrF0r7fscvngY4z8bj7Ozz8LNwOtVSFpSfnbK+tvr4+MDb29vAMCIESNQXl6O\nq1evylkS6ZTUp6xqsOeDtELW8DCZTOZUzMzMhBACbdu2lbMk0iEpejusYc8HaYWkcx5TpkzBnj17\ncPnyZXTu3BkLFixAeXk5AGDWrFnYuHEjVqxYgWbNmsHb2xuffvqplOUQWSRVb4c10yKmYeGehSgp\nK0FLz5aueVMiJ5N8zsMZOOdBUikvB/z9gb17pbtE15L49fEY12McEqISXPempDuanfMgkpvUvR3W\n8NQVqR3Dg3TNVRPlN2PPB6kdw4N0y5nrdtiL63yQ2jE8SLecvW6HvbjOB6kZw4N0S65TVjVqej72\n5O6RrwgiBzE8SJdMJiA31zW9HdYYDAZMCJuAnWd2ylcEkYMYHqRLR44AUVGu6+2wJqZjDI6ajspb\nBJEDGB6kSzXhIbeoDlHIupjFPiZSHYYH6ZJSwsPPxw9VogqXSi7JXQqRXRgeTlZaWopBgwZh165d\nGDNmjMVt4uLicOjQIZte74033kDPnj1hNBoxdOhQ5OXlAQCOHDmCu+66C+Hh4TAajfjss8/M+0yb\nNg2hoaGIiIjAAw88gIqKCvNzs2fPRnBwMIxGI7Kyssw1Dxw4EFVV+rnqRynhYTAYENUhCkcuHZG7\nFCK7MDycbN26dRg9ejTcGziZbjAYYDAYbHq9mJgYHDp0CEePHsWECRPw3HPPAQBatGiBTz75BMeP\nH0daWhrmzJmD69evAwCmT5+On3/+GceOHcNvv/2GDz74AACwY8cOnDlzBtnZ2Vi1ahUSExMBAF5e\nXhgwYAA2bdrUlB9dNW7cAM6fB0JD5a6kGsOD1Ijh4WTr16/Hn//8ZwBASUkJJk6ciB49emD69OkO\nvV5cXByaN28OAIiNjUVBQQEAIDg4GIGBgQCAjh07on379igqKgJQfXv7GnfeeScKCwsBAJs3b8aM\nPxbojo2NxbVr12AymQAA8fHxWL9+vUM1qs3x49XB4ekpdyXVojpE4YiJ4UHqwvBwosrKShw/fhzd\nu3eHEAJZWVl46623cOLECZw7dw4//PBDvX0mT56M6Ojoel9rLaxK9OGHH2LkyJH1Hs/MzER5ebk5\nTGqUl5dj7dq1uOeeewAAFy5cQOfOnc3P+/v7m8MoKirKYn1apJRTVjU48iA1knUZWq25fPkyfHx8\nzN/37t0bnTp1AlD94Zybm4u77rqrzj623oZ+7dq1OHz4MN588806j1+8eBH33Xcf1qypf5uLRx99\nFIMGDUK/fv3Mj918VU/N6TMvLy9UVVXh999/N490tEpp4RFyWwjy/53PW7STqjA8nKz2h7OXl5f5\n3+7u7nUmrmtMmjTJ4tK7Tz/9NP7yl78AAL755hskJyfju+++g4eHh3mb69evY/To0UhOTkbv3r3r\n7L9gwQJcuXIF77//vvkxPz8/5Ofnm78vKCiAn59fndptnYtRsyNHgClT5K7ivzzcPRD2P2E4ZjqG\nvp37yl0OkU0YHk7Url07lJSU2LXPhg0bGnw+KysLjzzyCL766iu0a9fO/HhZWRnGjh2L++67D+PG\njauzzwcffICvv/4a3377bZ3H4+PjsXz5ckyePBkZGRlo3bo1fH19AVRfceXu7l4n8LSoshI4dgww\nGuWupK6aU1cMD1ILhocTubu7Izw8HKdOnbLriqqGPPfcc7hx4wYmTJgAAOjSpQs2bdqEzz77DN9/\n/z2uXr2K1NRUAMDHH3+MyMhIJCYmIiAgAH37Vn8QjR8/HvPmzcPIkSOxY8cOBAUFoUWLFli9erX5\nfbKysszba9mZM0D79vLdDNEaTpqT2nAlQSdLTU2FyWTC888/L3cpdnnppZdw5513YuzYsXKXIqkN\nG6q/vvxS7krq2pu3F898/Qz2P7hf7lJIQ7iSoIpMnToV27dvV03YAdWnrPbu3Yt7771X7lIkp7TJ\n8hqRvpE4/stxVFTVnxcjUiKGh5N5enriu+++U9XEs5eXl+pqdpRSw+NWr1vRsWVHZF/JlrsUIpsw\nPEhXlBoeAPs9SF0YHqQbly4BpaVArT5JReGkOakJw4N04+jR6lGHUs/OceRBasLwIN1Q8ikrgGt7\nkLowPEg3lB4eXNuD1IThQbqh9PDg2h6kJgwP0gWlreFhDcOD1ILhQbqgtDU8rOEVV6QWDA/SBaWf\nsqrBkQepBcODdEEt4VF7bQ8iJWN4kC6oJTxqr+1BpGQMD9I8pa7hYQ1PXZEaMDxI85S6hoc1nDQn\nNWB4kOap5ZRVDY48SA0YHqR5agsPru1BasDwIM1TW3hwbQ9SA4YHaZ7awgPgqStSPoYHaZrS1/Cw\nhpPmpHQMD9I0pa/hYQ1HHqR0DA/SNDWesgK4tgcpH8ODNE2t4cG1PUjpGB6kaWoND67tQUrH8CDN\nUssaHtYwPEjJGB6kWWpZw8MaXnFFSsbwIM1S6ymrGhx5kJIxPEiz1B4eXNuDlEyy8MjPz8fgwYPR\ns2dPhIeHIyUlxeJ2s2fPRnBwMIxGI7KysqQqxyXS09PlLsEmaqjTGTW6IjykPJbOXNtDDf/NAdap\nJpKFh4eHB95880389NNPyMjIwDvvvIOTJ0/W2WbHjh04c+YMsrOzsWrVKiQmJkpVjkuo5RdKDXU2\ntUZXreEh9bF01qkrNfw3B1inmkgWHh06dEDUH3/2tWzZEj169MCFCxfqbLNlyxbMmDEDABAbG4tr\n167BZDJJVRLpiNrW8LCGk+akVC6Z88jNzUVWVhZiY2PrPF5YWIjOtW465O/vj4KCAleURBqn9vmO\nGjWd5kRoZ0S8AAAIIUlEQVSKIyRWXFws7rjjDvGPf/yj3nOjR48We/fuNX8/ZMgQcejQoXrbAeAX\nv/jFL3458CWVZpBQeXk5xo8fj+nTp+Pee++t97yfnx/y8/PN3xcUFMDPz6/edoL39yEiUhTJTlsJ\nIfDAAw8gLCwMc+bMsbhNfHw81qxZAwDIyMhA69at4evrK1VJRETkJAYh0Z/1e/fuxcCBAxEZGQnD\nH/fDTk5ORl5eHgBg1qxZAIDHH38caWlpaNGiBVavXo2YmBgpyiEiImeS7IRYLTt37hQhISEiKChI\nLF682OI2TzzxhAgKChKRkZHi8OHDje575coVMXToUBEcHCyGDRsmfv31V/NzycnJIigoSISEhIiv\nvvpKkXXm5OSI5s2bi6ioKBEVFSUSExNlrfOzzz4TYWFhws3Nrd68k5KOp7U6HT2eUtT47LPPitDQ\nUBEZGSnGjh0rrl27Zn5OScfSWp1K+92cN2+eiIyMFEajUdx9990iLy/P/JySjqe1OpV2PGssXbpU\nGAwGceXKFfNj9hxPycOjoqJCBAYGipycHFFWViaMRqM4ceJEnW22b98uRowYIYQQIiMjQ8TGxja6\n79y5c8WSJUuEEEIsXrxYPP/880IIIX766SdhNBpFWVmZyMnJEYGBgaKyslJxdebk5Ijw8HA7j6Z0\ndZ48eVKcOnVKxMXF1flQVtrxtFanI8dTqhq//vpr8zF6/vnnFfu7aa1Opf1uXr9+3bx/SkqKeOCB\nB4QQyjue1upU2vEUQoi8vDwxfPhwERAQYA4Pe4+n5JfqZmZmIigoCAEBAfDw8MDkyZOxefPmOttY\n6ve4dOlSg/vW3mfGjBnYtGkTAGDz5s2YMmUKPDw8EBAQgKCgIGRmZiquTkdJVWdoaCi6d+9e7/2U\ndjyt1ekIqWocNmwY3NzczPvUXH6utGNprU5HSVWnj4+Pef+SkhK0a9cOgPKOp7U6HSVVnQDw9NNP\n47XXXqvzWvYeT8nDw1IvR2FhoU3bXLhwweq+JpPJPLnu6+trbi68cOEC/P39G3w/JdQJADk5OYiO\njkZcXBz27t3baI1S1mmN0o5nQ+w9nq6o8aOPPsLIkSMBKPtY1q4TUN7v5l//+lfcfvvtSE1NxYsv\nvghAmcezps6PP/4YL7zwgvlxJR3PzZs3w9/fH5GRkXVey97jKXl41EyWN0bYMG8vhLD4egaDocH3\nsaUGV9fZqVMn5OfnIysrC2+88QamTp2K4uJil9bpKFcfT1s4cjylrnHRokXw9PTE1KlTm1SDq+tU\n4u/mokWLkJeXh5kzZ1q9etPWGlxRZ0JCAp566ikAyjqev/32G5KTk7FgwQKb9m+oBkn7PID6vRz5\n+fl10s3SNgUFBfD390d5ebnVPhBfX19cunQJHTp0wMWLF9G+fXurr2Wpd0TuOj09PeH5x0ITMTEx\nCAwMRHZ2dqNXmzmzTkv7NvZ+chxPW+p05HhKWWNqaip27NiBb7/9tsHXkvtYWqpTyb+bU6dONY+Q\nlHg8LdWppON59uxZ5ObmwvjHTd8KCgpwxx13YP/+/fYfT7tncexUXl4uunXrJnJyckRpaWmjkz77\n9u0zT/o0tO/cuXPNVxC8+uqr9SYlS0tLxblz50S3bt1EVVWV4uosKioSFRUVQgghzp49K/z8/Opc\nMebqOmvExcWJgwcPmr9X2vG0Vqcjx1OqGnfu3CnCwsJEUVFRnddS2rG0VqfSfjdPnz5t3j8lJUVM\nnz5dkcfTWp1KO561WZowt/V4uuRS3R07doju3buLwMBAkZycLIQQ4r333hPvvfeeeZvHHntMBAYG\nisjIyDpX0VjaV4jqS2CHDBli8VLdRYsWicDAQBESEiLS0tIUWecXX3whevbsKaKiokRMTIzYtm2b\nrHV++eWXwt/fXzRv3lz4+vqKe+65x/ycko6ntTo3btzo0PGUosagoCBx++23W7w0U0nH0lqdjh5L\nqeocP368CA8PF0ajUYwbN06YTCbzc0o6ntbqVNr/67V17dq1zqW69hxPyZoEiYhIu7iSIBER2Y3h\nQUREdmN4EBGR3RgeRERkN4YHkQVJSUlYtmxZo9tt27YNSUlJdr32kCFDbGoSI1IyhgeRBbZ29y5b\ntgyJiYl2vfbkyZPx/vvvO1IWkWIwPIj+sGjRIoSEhGDAgAE4depUo9vn5+ejrKzMfO+yhIQEPPro\no+jbty8CAwORnp6OGTNmICwsDDNnzjTvFx8fj08//VSyn4PIFSS/PQmRGhw6dAgbNmzA0aNHUV5e\njpiYGPTq1avBff71r3/VucWEwWDAtWvXsG/fPmzZsgXx8fHYt28fwsLCcOedd+Lo0aMwGo3w9fXF\n5cuXcePGDbRo0ULqH41IEhx5EAH4/vvvMW7cODRv3hw+Pj6Ij49v9IZzeXl56NixY53HxowZAwAI\nDw9Hhw4d0LNnTxgMBvTs2RO5ubnm7Xx9fevcR4hIbRgeRKgeNdQOC1tvvHDzdjU3wHNzc4OXl5f5\ncTc3N1RUVNTZz9Z5FSIlYngQARg4cCA2bdqE33//HcXFxdi2bVujH+5dunTBpUuXHHo/k8nU6J2C\niZSM4UEEIDo6GpMmTYLRaMTIkSPRu3fvRvfp168fDh8+XOex2oFzc/jUfH/p0iXcdtttnO8gVeON\nEYma4O6778a6devqzX00ZNWqVbhx44Z5sSAiNeLIg6gJnn32Wbz33nt27bNhwwY89NBDElVE5Boc\neRARkd048iAiIrsxPIiIyG4MDyIishvDg4iI7MbwICIiuzE8iIjIbv8PNfE+DP2EsOkAAAAASUVO\nRK5CYII=\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 10.2 Page NO.532"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of both the heat that the cooling fluid must remove and the condensation rate. \n",
"\n",
"#Given\n",
"# properties of water at (100 + 60)/2 = 80\u00b0C from appendix table C11\n",
"rou_f=974.0 # density in kg/m**3 \n",
"cp_1=4196.0 # specific heat in J/(kg*K) \n",
"v_1=0.364e-6 # viscosity in m**2/s \n",
"Pr_1=2.22 # Prandtl Number \n",
"kf=0.668 # thermal conductivity in W/(m.K)\n",
"a_1=1.636e-7 # diffusivity in m**2/s \n",
"Vv=1.9364 # specific volume in m**3/kg\n",
"rou_v=1/Vv # vapor density\n",
"g=9.81\n",
"hfg=2257.06*1000 \n",
"Tg=100\n",
"Tw=60\n",
"L=1\n",
"\n",
"#Calculation\n",
"# specifications of 1 nominal schedule 40 pipe from appendix F1\n",
"OD=0.03340\n",
"hD=0.782*((g*rou_f*(1-(rou_v/rou_f))*(kf**3)*hfg)/(v_1*OD*(Tg-Tw)))**(1/4.0)\n",
"hD=10720 #According to the book\n",
"import math\n",
"q=hD*math.pi*OD*L*(Tg-Tw)\n",
"mf=q/hfg\n",
"\n",
"#Result\n",
"print\"The heat flow rate is \",round(q,0),\"W\"\n",
"print\"The rate at which steam condenses is \",round(mf*3600,0),\"kg/hr\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat flow rate is 44994.0 W\n",
"The rate at which steam condenses is 72.0 kg/hr\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 10.3 Page NO. 538"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of (a) the power input to the water for boiling to occur, (b) the evaporation rate of water, and (c) the critical heat flux.\n",
"\n",
"#Given\n",
"# properties of water at 100\u00b0C = 373 K from appendix table 10.3\n",
"rou_f=958 # density in kg/m**3\n",
"cp_f= 4217 # specific heat in J/(kg*K) \n",
"v_f= 2.91e-7 # viscosity in m**2/s \n",
"Pr_f =1.76 # Prandtl Number \n",
"rou_g=0.596 \n",
"sigma=0.0589 # surface tension in N/m\n",
"hfg=2257000 \n",
"Tw=120.0\n",
"Tg=100.0\n",
"D=.141 # diameter of pan in m\n",
"g=9.81\n",
"gc=1\n",
"\n",
"#calculation\n",
"# nucleate boiling regime\n",
"Cw=0.0132 # formechanically polished stainless steel from table 10.2\n",
"q_A=(rou_f*v_f*hfg)*((g*rou_f*(1-(rou_g/rou_f)))/(sigma*gc))**(0.5)*((cp_f*(Tw-Tg))/(Cw*hfg*Pr_f**1.7))**3\n",
"A=math.pi*D**2/4.0\n",
"p=q_A*A # power delivered to the water in W\n",
"mf=q/hfg # water evaporation rate\n",
"q_cr=0.18*hfg*(sigma*g*gc*rou_f*rou_g**2)**(0.25)\n",
"\n",
"#Result\n",
"print\"(a)The power delivered to the water is kW\",round(q/1000,2),\"KW\"\n",
"print\"(b)The water evaporation rate is \",round(mf*3600,2),\"kg/h\"\n",
"print\"(c)The critical heat flux is \",round(q_cr,0),\"W/sq.m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The power delivered to the water is kW 4.98 KW\n",
"(b)The water evaporation rate is 7.94 kg/h\n",
"(c)The critical heat flux is 1521299.0 W/sq.m\n"
]
}
],
"prompt_number": 29
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|