1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
{
"metadata": {
"name": "CHAPTER1"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter1:Fundamental Concepts"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.1 Page No.7"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# determination of surface temperature on one side of a firewall\n",
"\n",
"#Given\n",
"k=9.4 # thermal conductivity in [BTU/hr.ft. \u02daRankine]\n",
"q=6.3 # heat flux in [BTU/s. sq.ft]\n",
"T1=350 # the outside surface temperature of one aide of the wall [\u02daF]\n",
"\n",
"#Calculation\n",
"# converting heat flux into BTU/hr sq.ft\n",
"Q=6.3*3600 # [BTU/hr.sq.ft]\n",
"dx=0.5 # thickness in [inch]\n",
"#converting distance into ft\n",
"Dx=0.5/12.0 # thickness in [ft]\n",
"# solving for temeprature T2\n",
"T2=T1-(Q*Dx/k) # [\u02daF]\n",
"\n",
"#Result\n",
"print\"The required temperature on the other side of the firewall is \",round(T2,1),\"F\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The required temperature on the other side of the firewall is 249.5 F\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.2 Page No.9"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# determination of thermal conductivity of aluminium\n",
"\n",
"#Given\n",
"k_ss=14.4 # thermal conductivity of stainless steel in [W/m.K]\n",
"dt_ss=40 # [K]\n",
"dt_al=8.65 # [K]\n",
"dz_ss=1 # [cm]\n",
"dz_al=3 # [cm]\n",
"\n",
"#calculation\n",
"k_al=k_ss*dt_ss*dz_al/(dt_al*dz_ss);# thermal conductivity of Al in [W/m.K]\n",
"\n",
"#result\n",
"print\"The thermal conductivity of aluminium is\",round(k_al,0),\"W/m.K\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The thermal conductivity of aluminium is 200.0 W/m.K\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.3 Page No.13"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# determination of heat transferred by convection\n",
"\n",
"#Given\n",
"h_c=3 # convective coefficient in [BTU/hr.ft**2\n",
"A=30*18 # Cross sectional area in ft**2\n",
"T_w=140 # Roof surface temperature in degree Fahrenheit\n",
"T_inf=85 # Ambient temperature in degree Fahrenheit\n",
"\n",
"#Calculation\n",
"dT= (T_w-T_inf)\n",
"Q_c=h_c*A*dT # Convective heat transfer in BTU/hr\n",
"\n",
"#Result\n",
"print\"The heat transferred by convection is\",round(Q_c,2),\"BTU/hr\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat transferred by convection is 89100.0 BTU/hr\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.4 Page No.14"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# determining average film conductance\n",
"\n",
"#Given\n",
"D=0.0243 # diameter in meter\n",
"L=0.2 # length in meter\n",
"A=3.14*D*L # cross-sectional area in sq.m\n",
"cp=4200.0 # specific heat of water in J/kg.K\n",
"T_b2=21.4 # temperature of bulk fluid in degree celsius\n",
"T_in=20.0 # temperature of inlet water in degree celsius\n",
"T_w=75.0 # temperature of wall in degree celsius\n",
"Q=500.0 # volumetric flow rate in cc/s\n",
"density=1000 # density of water in kg/cu.m\n",
"\n",
"#calculation\n",
"m=Q*density/10**6 # mass flowa rate in kg/s\n",
"# using definition of specific heat and Newton's law of cooling\n",
"hc=m*cp*(T_b2-T_in)/(A*(T_w-T_in))\n",
"\n",
"#result\n",
"print\"The average film conductance is \",round(hc,0),\"W/sq.m. K\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The average film conductance is 3503.0 W/sq.m. K\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.5 Page No.18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# determination of heat loss rate by radiation\n",
"\n",
"#Given\n",
"W=14 # width in ft\n",
"L=30.0 # length in ft\n",
"A=W*L # area in ft**2\n",
"F_12=1 # view factor assumed to be 1\n",
"T1=120+460 # driveway surface temperature in degree Rankine\n",
"T2=0 # space temperature assumed to be 0 degree Rankine\n",
"\n",
"#Calculation\n",
"sigma=0.1714*10**(-8) # value of Stefan-Boltzmann's constant in BTU/(hr.ft**2.(degree Rankine)**4)\n",
"e=0.9 # surface emissivity\n",
"q=sigma*A*e*F_12*((T1)**4-(T2)**4);\n",
"\n",
"#result\n",
"print\"The heat loss rate by radiation is \",round(q,0),\"BTU/hr\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat loss rate by radiation is 73319.0 BTU/hr\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.6 Page No.19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# determination of radiation thermal conductance\n",
"\n",
"#Given\n",
"A=420.0 # area in sq.ft\n",
"T1=580.0 # driveway surface temperature in degree Rankine\n",
"T2=0 # surface temperature assumed to be 0 degree Rankine\n",
"Qr=73320 # heat loss rate in BTU/hr\n",
"\n",
"#calculation\n",
"hr=Qr/(A*(T1-T2)) # radiation thermal conductance in BTU/(hr.ft**2.(degree Rankine)\n",
"\n",
"#result\n",
"print\"the radiation thermal conductance is \",round(hr,2),\"BTU/(hr. sq.ft R)\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the radiation thermal conductance is 0.3 BTU/(hr. sq.ft R)\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.7 Page No. 21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Identification of all resistances and their values\n",
"# Estimation of heat transfer per unit area\n",
"# Determination of the inside and outside wall temperatures\n",
"\n",
"#Given\n",
"A=1.0 # assuming A=1 m**2 for convenience\n",
"hc1_avg=15.0 # taking average of extreme values for hc [W/m**2.K]\n",
"k=(0.38+0.52)/2.0 # thermal conductivity of common brick in W/M.k\n",
"L=0.1 #10 cm converted into m\n",
"Rk=(L/(k*A)) # resistance of construction material, assume common brick\n",
"\n",
"#calcultion\n",
"T_inf1=1000.0 # temperature of exhaust gases in K\n",
"T_inf2=283.0 # temperature of ambient air in K\n",
"Rcl=1/(hc1_avg*A) # resistance on left side of wall [K/W]\n",
"Rc2=Rcl \n",
"q=(T_inf1-T_inf2)/(Rcl+Rk+Rc2) # heat transferred per unit area\n",
"T_in=T_inf1-Rcl*q #inlet temprature \n",
"T_out=T_inf2+Rc2*q\n",
"\n",
"#result\n",
"print\"(b)\"\n",
"print\"The resistance on left side of wall is \",round(Rcl,2),\"K/W\"\n",
"print\"The resistance of construction material of wall is\",round(Rk,2),\"K/W\"\n",
"print\"The resistance on right side of wall is \",round(Rc2,2),\"K/W\"\n",
"print\"(c)The Heat transferred per unit area is \",round(q/1000,2),\"kw\"\n",
"print \"(d)\"\n",
"print\"The inside wall temperature is \",round(T_in,0),\"K\"\n",
"print\"The outside wall temperature is\",round(T_out,1),\"K\"\n",
"\n",
"#Plot\n",
"import matplotlib.pyplot as plt\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"\n",
"x1=[5,5]\n",
"T1=[0,1000]\n",
"\n",
"x2=[8,8]\n",
"T2=[0,1000]\n",
"\n",
"x3=[1,4]\n",
"T3=[1000,1000]\n",
"\n",
"x4=[4,5]\n",
"T4=[1000,866]\n",
"\n",
"x5=[5,8]\n",
"T5=[866,417]\n",
"\n",
"x6=[8,9]\n",
"T6=[417,290]\n",
"\n",
"x7=[9,10]\n",
"T7=[290,283]\n",
"\n",
"xlabel(\"x\") \n",
"ylabel(\"T (K)\") \n",
"plt.xlim((0,11))\n",
"plt.ylim((0,1200))\n",
"\n",
"ax.plot([1], [1000], 'o')\n",
"ax.annotate('(1000K)', xy=(1,1020))\n",
"\n",
"ax.plot([5], [866], 'o')\n",
"ax.annotate('(T1)', xy=(5.5,866))\n",
"\n",
"ax.plot([8], [417], 'o')\n",
"ax.annotate('(T2)', xy=(7.5,417))\n",
"ax.plot([10], [283], 'o')\n",
"ax.annotate('(283K)', xy=(10.5,283))\n",
"\n",
"\n",
"\n",
"a1=plot(x1,T1)\n",
"a2=plot(x2,T2)\n",
"a3=plot(x3,T3)\n",
"a4=plot(x4,T4)\n",
"a5=plot(x5,T5)\n",
"a6=plot(x6,T6)\n",
"a7=plot(x7,T7)\n",
"show(a1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(b)\n",
"The resistance on left side of wall is 0.07 K/W\n",
"The resistance of construction material of wall is 0.22 K/W\n",
"The resistance on right side of wall is 0.07 K/W\n",
"(c)The Heat transferred per unit area is 2.02 kw\n",
"(d)\n",
"The inside wall temperature is 866.0 K\n",
"The outside wall temperature is 417.4 K\n"
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEICAYAAABiXeIWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVXXixvHPRTDLpUgEFExMILwuSO4lijqAoaKZkaCC\nYlONbVbT4kyNOjMpTvOrXHJmalxIHdFqwjUiM9QWt3CmFEsymAFEUgkVNxTO7w/qjqaYC+celuf9\nevkKzj33nOeY3IfvWW2GYRiIiIhUMxerA4iISN2kghEREVOoYERExBQqGBERMYUKRkRETKGCERER\nU5hWMImJiXh5edGpUyfHtKeffpr27dsTHBzMiBEjOHLkiOO1GTNmEBAQQFBQEOnp6Y7pn3/+OZ06\ndSIgIIDHH3/crLgiIlLNTCuY8ePHk5aWdt60iIgIdu/ezb///W8CAwOZMWMGAFlZWSxfvpysrCzS\n0tKYOHEiP16e86tf/Yr58+eTnZ1Ndnb2BcsUEZGaybSCCQ0Nxd3d/bxp4eHhuLhUrrJnz57k5+cD\nsHLlSmJjY3Fzc8PPzw9/f3+2bt1KYWEhx44do0ePHgDEx8eTmppqVmQREalGlh2DWbBgAVFRUQDs\n378fX19fx2u+vr4UFBRcMN3Hx4eCggKnZxURkSvnasVKX3zxRRo2bEhcXFy1LdNms1XbskRE6hOz\n7hjm9BHMokWLWLduHUuXLnVM8/HxIS8vz/F9fn4+vr6++Pj4OHaj/Tjdx8enymUbhlGv/kyZMsXy\nDNpmba+2uXZvs5mcWjBpaWm89NJLrFy5kkaNGjmmR0dHk5KSQllZGTk5OWRnZ9OjRw+8vb1p1qwZ\nW7duxTAMFi9ezPDhw50ZWURErpJpu8hiY2PZuHEjhw4donXr1kybNo0ZM2ZQVlZGeHg4AL1792be\nvHnY7XZiYmKw2+24uroyb948xy6vefPmMW7cOE6ePElUVBSDBg0yK7KIiFQjm2H2GMlJbDab6cO9\nmiYjI4OwsDCrYzhVfdvm+ra9oG12NjM/O1UwIiL1mJmfnbpVjIiImEIFIyIiplDBiIiIKVQwIiJi\nChWMiIiYQgUjIiKmUMGIiIgpVDAiImIKFYyIiJhCBSMiIqZQwYiIiClUMCIiYgoVjIiImEIFIyIi\nplDBiIiIKVQwIiJiChWMiIiYQgUjIiKmUMGIiIgpVDAiImIKFUw1OH36NP369aOiooJBgwbh7u7O\n0KFDz5snJyeHnj17EhAQwKhRozhz5ozjtccee4yAgACCg4PZuXOnY3paWhpBQUEEBAQwc+ZMx/Rx\n48bxzjvvAFBcXExISAjJycl89913REVFmby1IiKXRwVTDZYuXcqQIUNwcXHhmWeeYfHixRfM8+yz\nz/LUU0+RnZ2Nu7s78+fPB2DdunV88803ZGdn8/rrr/OrX/0KgPLych555BHS0tLIyspi2bJl7Nmz\nBwCbzYbNZuPIkSNERkby0EMPkZCQgKenJ+7u7mRmZjpv40VEqqCCqQbLli1j2LBhAAwYMIAmTZqc\n97phGHz00UeMHDkSgISEBFJTUwFYuXIlCQkJAPTs2ZOSkhIOHDjAtm3b8Pf3x8/PDzc3N0aNGsXK\nlSsdyzx27BhRUVGMGTOGBx980DE9OjqaZcuWmbq9IiKXQwVzjcrLy9m1axeBgYFVznP48GFuuukm\nXFwq/7p9fHwoKCgAYP/+/bRu3doxr6+vLwUFBVVOh8rCevLJJwkNDeXxxx8/b109evRg06ZN1bZ9\nIiJXSwVzjQ4dOkTTpk2vaRmGYVzR/DabjQEDBpCamsrBgwfPe61ly5bk5uZeUx4RkeqggqkGPy0I\nm8123vfNmzenpKSEiooKAPLz8/Hx8QEqRzN5eXmOefPz8/H19b1gel5eHr6+vo7vR40axUMPPURU\nVBSlpaXnZfnp+kVErKCCuUYeHh7nfcDDxQunf//+vPXWWwAkJyczfPhwoPKYyZtvvgnAli1buOmm\nm/Dy8qJbt25kZ2eTm5tLWVkZy5cvJzo6+rzlTpo0iYEDBzJixAjHWWmFhYW0adPGlG0VEbkSphVM\nYmIiXl5edOrUyTGtuLiY8PBwAgMDiYiIoKSkxPHajBkzCAgIICgoiPT0dMf0zz//nE6dOhEQEHDB\n8YaaoEGDBnTs2JGvv/4agNDQUGJiYvjwww9p3bo1H3zwAQAzZ87k5ZdfJiAggO+//54JEyYAEBUV\nxa233oq/vz8PPvgg8+bNA8DV1ZW5c+cSGRmJ3W7nvvvuo3379o71/jhKSUpKwtfXl/j4eAzDYNu2\nbfTt29eZfwUiIhdnmGTTpk1GZmam0bFjR8e0p59+2pg5c6ZhGIaRlJRkPPvss4ZhGMbu3buN4OBg\no6yszMjJyTHatWtnVFRUGIZhGN27dze2bt1qGIZh3HXXXcZ777130fWZuCkXtWbNRiMi4rdGv35T\njA4dhhjjxj3o1PVXJS4uzsjMzLQ6hojUEmZ+dpo2ggkNDcXd3f28aatWrXKckvvTU3VjY2Nxc3PD\nz88Pf39/tm7dSmFhIceOHaNHjx4AxMfHO95jpbVrN/H44++Tnv5HNm6cyu7d75CSso41azZamuu7\n776jpKSEkJAQS3OIiICTj8EUFRXh5eUFgJeXF0VFRUDlqbrnHsA+91Tdc6efe3qvlWbPTmffvhfP\nmdKQU6f+y9y56y3LBODp6cnatWstzWCWM2cgLg5+2BMpIrWAq1Ur/vFq9Oo0depUx9dhYWGEhYVV\n6/J/dPr0uX9t/9uG998Hm+2PpqxTAO5n2bIXSUvzJDLSuWvOsGUQZoQ5d6X1VEaGjbCwKzt1Xy5f\nRkYGGRkZTlmXUwvGy8uLAwcO4O3tTWFhIZ6ensClT9XNz88/b/qPp/dezLkFY6brrjt7znf/+0GI\njHyBtLQ/OCVDffXxxxATA7/+NTzxBOiMbJEr89NfvqdNm2baupy6iyw6Oprk5GTgwlN1U1JSKCsr\nIycnh+zsbHr06IG3tzfNmjVj69atGIbB4sWLHe+x0mOPRdCu3W/Pm9au3W949NFwixLVH336wJYt\nsHgxjBsHp05ZnUhEqmLaCCY2NpaNGzdy6NAhWrduze9//3uee+45YmJimD9/Pn5+fqxYsQIAu91O\nTEwMdrsdV1dX5s2b59h9Nm/ePMaNG8fJkyeJiopi0KBBZkW+bIMHV54GPGfOC5w61YBGjcp59NFB\njulirltuqRzJjB8PYWHw7rvQsqXVqUTkp2w/nKZW69lstiu+5YrUboYBL74If/sb/POf0L27eevS\nMRjn0TEY5zLzs1NX8kutZbPB88/DnDkQFQVLl1qdSETOZdlZZCLVZfhwaNcOhg2DL76A6dOhQQOr\nU4mIRjBSJ3TqBNu2wfbtEB0NR45YnUhEVDBSZ3h4VF6L1LYt9OoFe/danUikflPBSJ3i5gZz51Ze\nIxMaCufcN1VEnEwFI3XSAw/AW29BQgK88krlGWci4lwqGKmz+vatvCgzORkSE+H0aasTidQvKhip\n09q0gU8+gWPHKi/KLCy0OpFI/aGCkTqvcWNYsQLuugt69oQdO6xOJFI/qGCkXnBxgd/9DmbNqiya\nf/zD6kQidZ8utJR65e67wd+/8qLML7+EP/5RF2WKmEUjGKl3frwo87PPKovm6FGrE4nUTSoYqZc8\nPOCDDypPAujVC7KzzV3f6dOncXd3p3PnzoSEhNC8eXNuvfVWQkJCiIiIAGDQoEG4u7szdOjQ894b\nExNDTk6OuQFFTKCCkXrLzQ1eew0ee6zyOTMffGDeupYuXcpvfvMbvvjiC3bu3El0dDR//vOf2blz\nJ+k/XA36zDPPsHjx4gve+8tf/pJXXnnFvHAiJlHBSL330EOVZ5nFx1eeBGDGRZnLli1j2LBh5037\n6S3SBwwYQJMmTS54b1hYGOvWrav+UCImU8GIAP36VR6TWbAAJkyo3osyy8vL2bVrF4GBgVf1fjc3\nN3x8fNizZ0/1hRJxAhWMyA/8/CovyjxyBPr3hwMHqme5hw4domnTpte0jFatWpGbm1s9gUScRAUj\nco4mTSrvYRYZCT16wKzXNhM5PhKAyPGRrP1g7VUt93KfGPjjo8Iv9n4XF/24Su2i62BEfsLFBaZM\ngdPln/Pkk3Yqot2ZDKT7pbPvtX0ADA4ffNnL8/DwoLS09LLmraqICgsLadOmzWWvU6Qm0K9EIlX4\nPO83VCQOgKKOTA57G4B9IfuYkzLnipbToEEDOnbsyNdff33e9J+OVkJDQ4mJieHDDz+kdevWfPDD\naW1nzpwhPz+foKCga9gaEefTCEakCqeN0+D9BTTNp+hIC8f0U+WnrnhZo0ePJjU1lWeffRaAhQsX\nXjDP5s2bL/rejz76iCFDhlzxOkWsphGMSBWus11X+UXjYuYk/59jesMGDa94WXFxcaxdu/ayj8Wc\n6+9//ztPPPHEFb9PxGoqGJEqPBb3GO12tgOg8enGlf/9vjHfdfqOY6ePXdGyGjZsyKZNm6o8iH8p\nK1aswM/P74rfJ2I1FYxIFQaHD2bWw7OI/O8PZ5H9N5J/RP2DXv696J/cn4PHD1qcUKRmsxlXM2av\ngWw221XtfhC5HBm2DMKMMKDyTK8pGVNYvns56WPSaXOTzu6qThkZNsLC9LPsLGZ+dmoEI3KFbDYb\nv+//ex7p/gh9FvZh93e7rY4kUiPpLDKRq/Roz0fxuMGDgW8O5J/3/ZM7Wt9hdSSRGkUjGJFrENsp\nluThyQxPGc66bN2QUuRcKhiRaxTpH8nq2NUkrkxk8b8vvN2+SH1lScHMmDGDDh060KlTJ+Li4jh9\n+jTFxcWEh4cTGBhIREQEJSUl580fEBBAUFCQ49kZIjVJT9+efJTwEb/d8Fte+UzPbhEBCwomNzeX\nN954g8zMTL788kvKy8tJSUkhKSmJ8PBw9u7dy8CBA0lKSgIgKyuL5cuXk5WVRVpaGhMnTqSiosLZ\nsUV+VvsW7fk48WNez3ydyR9O1lmNUu85vWCaNWuGm5sbJ06c4OzZs5w4cYJWrVqxatUqEhISAEhI\nSCA1NRWAlStXEhsbi5ubG35+fvj7+7Nt2zZnxxa5LLfceAubx29mQ84G7l99P2crzlodScQyTj+L\n7Oabb+app57illtu4frrrycyMpLw8HCKiorw8vICwMvLi6KiIgD2799Pr169HO/39fWloKDgosue\nOnWq4+uwsDDCwsJM2w6Rqnjc4MGH8R9yz4p7GLliJMvuWcb1btdbHUsEgIyMDDIyMpyyLqcXzL59\n+3j11VfJzc3lxhtv5N5772XJkiXnzWOz2S55S42qXju3YESs1KRhE1bHriYhNYFBSwexatQqbmx0\no9WxRC745XvatGmmrcvpu8h27NjBHXfcQfPmzXF1dWXEiBF89tlneHt7c+CHRwgWFhbi6ekJgI+P\nD3l5eY735+fn4+Pj4+zYIlesYYOGLB2xlM5enem3qB8HSqvpEZkitYTTCyYoKIgtW7Zw8uRJDMNg\n/fr12O12hg4dSnJyMgDJyckMHz4cgOjoaFJSUigrKyMnJ4fs7Gx69Ojh7NgiV8XF5sLsQbMZaR9J\nnwV92Fe8z+pIIk7j9F1kwcHBxMfH061bN1xcXLj99tt54IEHOHbsGDExMcyfPx8/Pz9WrFgBgN1u\nJyYmBrvdjqurK/PmzbuqO9KKWMVms/F83+fxuMGDvov6sjZuLV28u1gdS8R0utmlyGU492aX1+Lt\nrLeZuHYib937Fv38+l17sDpIN7t0Lt3sUqSOGGmvPKvs3rfuZeVXK62OI2IqFYyIkw28dSDvjX6P\nh9Y+xIKdC6yOI2Ia3U1ZxAJdW3Vl47iNRC6J5ODxgzxz5zM6tih1jkYwIhYJbB7IJ4mfsOTLJfz6\ng19TYegWSFK3qGBELNSqaSs2jdvE1vytjEsdx5nyM1ZHEqk2KhgRi7lf70762HSKTxYzfPlwTpw5\nYXUkkWqhghGpAW5wu4F373sXjxs8CF8cTvHJYqsjiVwzFYxIDeHWwI2FwxbS27c3/Rb1o+DoxW/q\nKlJbqGBEahAXmwsvhb/E2M5j6bOwD3sP77U6kshV02nKIjWMzWbjmTufweMGD/ot6sfq2NV0a9XN\n6lgiV0wjGJEaKjEkkb8O/itRS6P48NsPrY4jcsVUMCI12LCgYbwd8zax78Ty1u63rI4jckW0i0yk\nhuvbpi8fjP2AqH9EcejEIX7V/VdWRxK5LCoYkVog2DuYzeM3E7E4goMnDvJC3xd0axmp8bSLTKSW\nuNX9Vj5O/Jh3v3qXR997VLeWkRpPBSNSi3g38SYjIYNd3+0i7p04ysrLrI4kUiUVjEgtc2OjG0kb\nk8bp8tMMXTaU0rJSqyOJXJQKRqQWauTaiLfufYvWzVoz8M2BHDpxyOpIIhdQwYjUUq4urrwx9A0G\nth1I6MJQ/nvkv1ZHEjmPCkakFrPZbEwfOJ0Hbn+APgv6kHUwy+pIIg6XPE35zJkzpKens2nTJnJz\nc7HZbLRp04a+ffsSGRmJq6vOchapCZ7o/QQtGrdgQPIAUkel0su3l9WRRKoewfzhD3+ge/furFmz\nhqCgIBITE0lISOC2225j9erVdOvWjT/+8Y/OzCoilzCm8xgWDFtA9LJo0r5JszqOSNUjmODgYJ5/\n/vmLXsyVmJhIRUUFa9asMTWciFyZqIAoVo5ayfDlw3kl8hXiOsVZHUnqsSpHMLfcckuVVwr/5S9/\nwcXFhejoaNOCicjV6d26NxviN/Ds+meZvXW21XGkHquyYEaMGMGOHTsumD5lyhRef/11U0OJyLXp\n4NmBj8d/zGvbX+P5Dc9jGIbVkaQeqrJg3nrrLWJiYvj0008BqKio4KGHHmLjxo1s3LjRaQFF5Oq0\nuakNH4//mPf3vc9Dax+ivKLc6khSz1RZMF27diU1NZWxY8eSlpbGvffey8GDB3n//fdp1qyZMzOK\nyFVq0bgFG+I3sK94HzFvx3Dq7CmrI0k9UmXBFBcX4+vry6JFixg9ejRubm787W9/4/jx4xQXFzsz\no4hcg6bXNWVt3Foa2BoQtTSKo6ePWh1J6okqC+b222+na9euxMfH07RpU7Zu3Ur37t3p2rUr3bpd\n2+NbS0pKGDlyJO3bt8dut7N161aKi4sJDw8nMDCQiIgISkpKHPPPmDGDgIAAgoKCSE9Pv6Z1i9RH\n17lex7J7lhHkEUTYojCKSousjiT1gM2w4OhfQkIC/fr1IzExkbNnz3L8+HFefPFFPDw8eOaZZ5g5\ncybff/89SUlJZGVlERcXx/bt2ykoKOAXv/gFe/fuxcXl/G602Ww6kCmmybBlEGaEWR3jmhmGwbSN\n01j65VLSx6TT1r2t1ZEukJFhIyxMP8vOYuZnZ5UjmG+//fZn37xv374rXuGRI0fYvHkziYmJALi6\nunLjjTeyatUqEhISgMoCSk1NBWDlypXExsbi5uaGn58f/v7+bNu27YrXKyKVHyZTw6YyqeckQheG\n8kXRF1ZHkjqsygstJ0+ezPHjx4mOjqZbt260bNkSwzAoLCxkx44drFq1iqZNm5KSknJFK8zJyaFF\nixaMHz+ef//733Tt2pVXX32VoqIivLy8APDy8qKoqHIIv3//fnr1+t9tL3x9fSkoKLjosqdOner4\nOiwsjLCwsCvKJlJfPNzjYTxu8CB8cThv3/s2oW1CrY4kTpKRkUFGRoZT1lVlwSxfvpxvvvmGlJQU\nfvvb3/Kf//wHgDZt2tCnTx/mzJnDrbfeesUrPHv2LJmZmcydO5fu3bszadIkkpKSzpvHZrNd8nGw\nVb12bsGIyKXd1/E+br7+Zu5ZcQ/zo+cz9LahVkcSJ/jpL9/Tpk0zbV2XvFulv78/zz//fLWu0NfX\nF19fX7p37w7AyJEjmTFjBt7e3hw4cABvb28KCwvx9PQEwMfHh7y8PMf78/Pz8fHxqdZMIvVVeLtw\n1satZeiyoSSdTGJcl3FWR5I6xOm36/f29qZ169bs3bsXgPXr19OhQweGDh1KcnIyAMnJyQwfPhyA\n6OhoUlJSKCsrIycnh+zsbHr06OHs2CJ1Vnef7mSMy2BKxhRe+uQlq+NIHWLJ/fbnzJnD6NGjKSsr\no127dixcuJDy8nJiYmKYP38+fn5+rFixAgC73U5MTAx2ux1XV1fmzZt3yd1nInLlgjyC+CTxEyIW\nR/Ddie/40y/+pJ8zuWaWnKZsBp2mLGaqK6cp/5zDJw4zZNkQgjyCeGPoG7i6OP93UJ2m7FyWnKYs\nIvVP8xuas37seg6UHmDE8hGcPHPS6khSi1VZMGfOnHFmDhGpIRo3bMyqUatodl0zIpZEUHKq5Off\nJHIRVRZMz549nZlDRGoQtwZuvHn3m3Rt2ZW+C/tSeKzQ6khSC1VZMDqeIVK/udhceCXyFWI7xnLn\ngjvJPpxtdSSpZao8gnfw4EFefvnlixaNzWbjySefNDWYiFjPZrMxOXQyLRq3oN+ifqyJW8PtLW+3\nOpbUElUWTHl5OceOHXNmFhGpoe6//X5uvv5mBi0ZxPKRy+nftr/VkaQWqLJgvL29mTJlijOziEgN\nNqL9CNwbuXPf2/fx1yF/ZUT7EVZHkhpOpymLyGXr37Y/7495n0fWPcLrn79udRyp4aocwaxfv96Z\nOUSklghpGcKm8ZuIWBzBweMH+U3ob3TVv1xUlSOY5s2bOzOHiNQi/jf780niJ6zIWsET7z9BhVFh\ndSSpgbSLTESuSsumLdk4biOZhZmMfXcsZeVlVkeSGkYFIyJX7aZGN/H+mPc5dvoYw1KGcbzsuNWR\npAZRwYjINbne7Xr+ed8/8W7izcA3B3L4xGGrI0kNoYIRkWvm6uLKgugF9PPrR+jCUPKO5P38m6TO\nU8GISLWw2WzM/MVMEkMS6bOwD18d+srqSGIxSx44JiJ116/v+DUeN3gQtiiMVbGr6OGjJ9DWVxrB\niEi1G9dlHG8MfYPB/xhM+r50q+OIRVQwImKKobcN5d373mXMP8eQsivF6jhiAe0iExHT9LmlD+vj\n1xO1NIrDJw7zcI+HrY4kTqQRjIiYqrNXZzaP38yrW19lSsYUPWuqHlHBiIjp2rq35ZPET1izdw0P\nr3uY8opyqyOJE6hgRMQUp0+fxt3dnc6dOxMSEkL7W9pTPKOYxRMX4xPiw/bPt9O7d286duxIcHAw\nK1ascLw3JiaGnJwcC9NLdbAZdWS8arPZNPQW02TYMggzwqyOUassWLCAw4cP8/TTTwMwfvx4hg4d\nSlR0FKP/OZrC3EL+MvQvBLcPprCwkK5du/LVV1+RmXkjZ86ks3r1ambPnm3xVtR9Zn52agQjIqZY\ntmwZw4YNO2+aYRg0cm3EipEr6GTvxITNEzh4/CAtW7bE09OTgwcPAhAWFsa6deusiC3VSAUjItWu\nvLycXbt2ERgYeNHXG7g04K+D/8pdAXfRZ2EfUj9M5cyZM7Rr1w4ANzc3fHx82LNnjzNjSzVTwYhI\ntTt06BBNmza95Dw2m40/9P8DY9qO4d64e7lnzGCej4wE4PnISNyA3Nxc88OKaVQwImKKy9mvf/To\nUVJ/l8rw+6L4vyMvc9eeyqv+/5iezv7MTHbv2GF2TDGRCkZEqp2HhwelpaWXnKesrIy7776b+Ph4\nbvv6FO+8U849MfCfLZWvtygtZd/77zshrZjFsoIpLy8nJCSEoUOHAlBcXEx4eDiBgYFERERQUlLi\nmHfGjBkEBAQQFBREerruayRS0zVo0ICOHTvy9ddfnzfdZrM5vl6xYgWbN29m0aJFzP/0UyZ/A7MW\nwpAZUAbkA16uutlIbWZZwcyaNQu73e74B5eUlER4eDh79+5l4MCBJCUlAZCVlcXy5cvJysoiLS2N\niRMnUlGh53+L1HSjR48mNTXV8f3ChQsZMWKE4/sxY8ZQVlbGzp07mXDHHewE7iuGr/8OGcAQwK1B\nA2fHlmpkScHk5+ezbt067r//fsd+2lWrVpGQkABAQkKC4x/mypUriY2Nxc3NDT8/P/z9/dm2bZsV\nsUXkCsTFxbF27drLOhYT8dhj/PaHM8jKWsDfgb5Nm/Lknj3wr3+ZnFTMYsn484knnuCll17i6NGj\njmlFRUV4eXkB4OXlRVFREQD79++nV69ejvl8fX0pKCi46HKnTp3q+DosLIywsLDqDy8il6Vhw4Zs\n2rTpsubtO3gwAC/MmcNA3ue2yEhaPPoo1x89CuHh8Oc/ww+/gMq1ycjIICMjwynrcnrBrFmzBk9P\nT0JCQqrcSJvNdt6+2ou9fjHnFoyI1C59Bw+m7+DBZGTY+ENa2v9e6NwZRoyATz+FWbOgUSPrQtYB\nP/3le9q0aaaty+m7yD799FNWrVpF27ZtiY2NZcOGDYwdOxYvLy8OHDgAQGFhIZ6engD4+PiQl/e/\n53vn5+fj4+Pj7NgiYpUOHWD7djh0CEJD4T//sTqRXCanF8z06dPJy8sjJyeHlJQUBgwYwOLFi4mO\njiY5ORmA5ORkhg8fDkB0dDQpKSmUlZWRk5NDdnY2PXroEawi9UqzZvD22zBqFPToATp9uVaw/BzA\nH3d3Pffcc8TExDB//nz8/Pwcd1a12+3ExMRgt9txdXVl3rx5l9x9JiJ1lM0GTz0F3bpBXBw8+CA8\n/zy46HK+mkp3Uxa5DLqbsvNkZNgIC/uZn+X9++G++6BpU1iyBG6+2Tnh6iDdTVlE5FytWsGGDRAU\nVDmiycy0OpFchApGRGonNzd4+WWYORMiI2H+fKsTyU+oYESkdrv3Xti0Cf7v/2DCBDh50upE8gMV\njIjUfu3bw7ZtUFoKd94JetxyjaCCEZG6oUkTSEmB+Hjo1Qv0REzLqWBEpO6w2WDSJHjnHXjgAfjd\n76C83OpU9ZYKRkTqnj59YMeOymMzUVGVdwEQp1PBiEjd5O0N69dDcHDlqczbt1udqN5RwYhI3eXq\nCn/6U+XpzIMHw9/+Brog22lUMCJS940YAR9/DHPnwvjxcOKE1Ymq1enTp+nXrx+ZmZn07t2bjh07\nEhwc7LjlFsC6devo0qULISEhhIaGsm/fPsdrwcHBhISE0LVrVzZs2OCY3qRJk/Pef9ttt/Hf//6X\n2bNns3i++i8PAAAM3UlEQVTx4p8PZtQRdWhTpAb6iI+sjlBvfPSRiT/LpaWGERdnGMHBhvHNN+at\nx8nmz59v/OlPfzL27t1rfPPDdu3fv99o2bKlceTIEcMwDKNNmzbGV199ZRiGYcybN88YN26cYRjn\nf3Z+8cUXRrt27RzfN2nSxDAMw1i/fr3h7+9vfPvtt4ZhGMbRo0eN7t27/2wujWBEpP5o3Ljy3mW/\n/CX07g2rV1udqFosW7aMYcOGERAQQLsfngzasmVLPD09OXjwoOP7I0eOAFBSUnLRx56Ulpbi4eFx\n3rRNmzbxwAMPsHbtWtq2bQtA06ZNad68Obt3775kLsvvpiwi4lQ2Gzz8MNx+e+UNM7dsgd//Hho0\nsDrZVSkvL2fXrl0EBgaeN33btm2cOXPGUThz584lIiKCG264gWbNmrFlyxbHvKmpqUyePJnCwkLe\nP+dRCKdOneLuu+9m48aNFyy/R48ebNq0iQ4dOlSZTSMYEamfeveuPJV5y5bKe5n98Ju+M63dsIHI\nxx4jbNIkIh97jLXnHP+4XIcOHaJp06bnTSssLCQ+Pp6FCxcCUFFRwdixY0lLSyMvL4/x48fz5JNP\nOuYfPnw4e/bsYfXq1cTHxzumN2zYkDvvvJO///3vF6y3VatW5ObmXjKbRjAiUn95ekJ6OrzwAi9O\nncq3Y8fSuHlzGjdoUPnHxeV/X//M9w2u8DlVazds4PFly9g3erRj2r6lSwEYPGDAFS3LOOfMuKNH\njzJkyBCmT5/ueDjjwYMHKSsro3v37gDExMRw1113XbCc0NBQzp49y+HDh2nevDkuLi6sWLGCAQMG\nMGPGDCZPnnzeOn/u2VwqGBGp3xo0gOnT6Z6ejqenJ8cbNuR4eTnHy8s5WFbG8YoKjpeXc6K83PG1\n4885r7m5uDgK54bLKKdlu3efVy4A+0aPZk5q6hUVjIeHB6WlpQCUlZVx9913Ex8fz4gRIxzztGjR\nghMnTpCdnU1AQAAffPABdrvd8fqPZZH5w2MPmjdv7nitUaNGrF27ltDQULy8vEhMTAQqR0l+fn6X\nzKaCEREBIiIirvq9hmFwqqKiygL68c+Jc74/0ajRRZd16grX3aBBAzp27MjXX3/N9u3b2bx5M8XF\nxSxatAiofAR9586dWbBgATExMRiGwc0338yCBQscy+jUqRNubm40adKElJQUx/QfRyju7u6kpaXR\nt29fPD09GTJkCNu2bePPf/7zJbOpYERErpHNZuP6Bg24vkEDPNzcLus9W778kvyAgAumX7x2Lm30\n6NGkpqby7LPPMmbMmIvOM2jQIAYNGnTR13bt2nXR6UePHnV87evry7fffuuYfujQoUse4Acd5BcR\nscRjw4fT7odjLj9qt2QJj0ZHX/Gy4uLiWLt2rdMeG79o0SIef/zxn53PZjgrkcnMfK60SIYtgzAj\nzOoY9UJGho2wsPrxs7x2wwbmrFrFKSpHLo9GR1/xAf5rZeZnp3aRiYhYZPCAAU4vFGfSLjIRETGF\nCkZEREyhghEREVOoYERExBQqGBERMYUKRkRETKGCERERUzi9YPLy8ujfvz8dOnSgY8eOzJ49G4Di\n4mLCw8MJDAwkIiKCkpISx3tmzJhBQEAAQUFBpKenOzuyiIhcBacXjJubG6+88gq7d+9my5YtvPba\na+zZs4ekpCTCw8PZu3cvAwcOJCkpCYCsrCyWL19OVlYWaWlpTJw4kYqKCmfHFhGRK+T0gvH29qZL\nly4ANGnShPbt21NQUMCqVatISEgAICEhgdTUVABWrlxJbGwsbm5u+Pn54e/vz7Zt25wdW0RErpCl\nx2Byc3PZuXMnPXv2pKioCC8vLwC8vLwoKioCYP/+/fj6+jre4+vrS0FBgSV5RUTk8ll2L7LS0lLu\nueceZs2adcHjPm022yWflFbVa1OnTnV8HRYWRlhYWHVEFRGpMzIyMsjIyHDKuiwpmDNnznDPPfcw\nduxYhg8fDlSOWg4cOIC3tzeFhYV4enoC4OPjQ15enuO9+fn5+Pj4XHS55xaMiIhc6Ke/fE+bNs20\ndTl9F5lhGEyYMAG73c6kSZMc06Ojo0lOTgYqn8D2Y/FER0eTkpJCWVkZOTk5ZGdnO54zLSIiNZfT\nRzCffPIJS5YsoXPnzoSEhACVpyE/99xzxMTEMH/+fPz8/FixYgUAdrudmJgY7HY7rq6uzJs375K7\nz0REpGbQA8dELoMeOOY89emBYzWBmZ+dupJfRERMoYIRERFTqGBERMQUKhgRETGFCkZEREyhghER\nEVOoYERExBQqGBERMYUKRkRETKGCERERU6hgRETEFCoYERExhQpGRERMoYIRERFTqGBERMQUKhgR\nETGFCkZEREyhghEREVOoYERExBQqGBERMYUKRkRETKGCERERU6hgRETEFCoYERExhQpGRERMoYIR\nERFTqGBERMQUKhgRETFFrSmYtLQ0goKCCAgIYObMmVbHqREyMjKsjuB09W2b69v2AvzrX1YncL66\n+v+5VhRMeXk5jzzyCGlpaWRlZbFs2TL27NljdSzL1dV/lJdS37a5vm0vqGDqklpRMNu2bcPf3x8/\nPz/c3NwYNWoUK1eutDqWiIhcQq0omIKCAlq3bu343tfXl4KCAgsTiYjIz7EZhmFYHeLnvPPOO6Sl\npfHGG28AsGTJErZu3cqcOXMc89hsNqviiYjUambVgKspS61mPj4+5OXlOb7Py8vD19f3vHlqQU+K\niNQrtWIXWbdu3cjOziY3N5eysjKWL19OdHS01bFEROQSasUIxtXVlblz5xIZGUl5eTkTJkygffv2\nVscSEZFLqBUjGIC77rqLr7/+mm+++YbJkyc7pte362Py8vLo378/HTp0oGPHjsyePdvqSE5TXl5O\nSEgIQ4cOtTqKU5SUlDBy5Ejat2+P3W5ny5YtVkcy3YwZM+jQoQOdOnUiLi6O06dPWx2p2iUmJuLl\n5UWnTp0c04qLiwkPDycwMJCIiAhKSkosTFh9ak3BXEx9vD7Gzc2NV155hd27d7NlyxZee+21Or/N\nP5o1axZ2u73enNDx+OOPExUVxZ49e/jiiy/q/Kg9NzeXN954g8zMTL788kvKy8tJSUmxOla1Gz9+\nPGlpaedNS0pKIjw8nL179zJw4ECSkpIsSle9anXB1MfrY7y9venSpQsATZo0oX379uzfv9/iVObL\nz89n3bp13H///fXihI4jR46wefNmEhMTgcrdxDfeeKPFqczVrFkz3NzcOHHiBGfPnuXEiRP4+PhY\nHavahYaG4u7uft60VatWkZCQAEBCQgKpqalWRKt2tbpg6vv1Mbm5uezcuZOePXtaHcV0TzzxBC+9\n9BIuLrX6n+xly8nJoUWLFowfP57bb7+dX/7yl5w4ccLqWKa6+eabeeqpp7jlllto1aoVN910E7/4\nxS+sjuUURUVFeHl5AeDl5UVRUZHFiapHrf5prS+7Si6mtLSUkSNHMmvWLJo0aWJ1HFOtWbMGT09P\nQkJC6sXoBeDs2bNkZmYyceJEMjMzady4cZ3ZbVKVffv28eqrr5Kbm8v+/fspLS1l6dKlVsdyOpvN\nVmc+22p1wVzO9TF10ZkzZ7jnnnsYM2YMw4cPtzqO6T799FNWrVpF27ZtiY2NZcOGDcTHx1sdy1S+\nvr74+vrSvXt3AEaOHElmZqbFqcy1Y8cO7rjjDpo3b46rqysjRozg008/tTqWU3h5eXHgwAEACgsL\n8fT0tDhR9ajVBVMfr48xDIMJEyZgt9uZNGmS1XGcYvr06eTl5ZGTk0NKSgoDBgzgzTfftDqWqby9\nvWndujV79+4FYP369XTo0MHiVOYKCgpiy5YtnDx5EsMwWL9+PXa73epYThEdHU1ycjIAycnJdecX\nR6OWW7dunREYGGi0a9fOmD59utVxTLd582bDZrMZwcHBRpcuXYwuXboY7733ntWxnCYjI8MYOnSo\n1TGc4l//+pfRrVs3o3Pnzsbdd99tlJSUWB3JdDNnzjTsdrvRsWNHIz4+3igrK7M6UrUbNWqU0bJl\nS8PNzc3w9fU1FixYYBw+fNgYOHCgERAQYISHhxvff/+91TGrRa24F5mIiNQ+tXoXmYiI1FwqGBER\nMYUKRkRETKGCERERU6hgREyyfft2goODOX36NMePH6djx45kZWVZHUvEaXQWmYiJXnjhBU6dOsXJ\nkydp3bo1zz77rNWRRJxGBSNiojNnztCtWzeuv/56PvvsszpzCxCRy6FdZCImOnToEMePH6e0tJST\nJ09aHUfEqTSCETFRdHQ0cXFxfPvttxQWFjJnzhyrI4k4Ta14ZLJIbfTmm29y3XXXMWrUKCoqKrjj\njjvIyMggLCzM6mgiTqERjIiImELHYERExBQqGBERMYUKRkRETKGCERERU6hgRETEFCoYERExxf8D\nkIhbnvzxNPAAAAAASUVORK5CYII=\n"
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.8 Page No.24"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# determination of surface temperature\n",
"\n",
"#Given\n",
"k=0.604 # [BTU/(hr.ft.degree Rankine)]\n",
"hc=3.0 # average value for natural convection in BTU/(hr.ft**2.degree Rankine)\n",
"ew=0.93 \n",
"f_wr=1.0 # shape factor\n",
"sigma= 0.1714*10**(-8) # BTU/(hr.ft**2.degree Rankine).\n",
"L=4/12.0 # length in ft\n",
"T1=80+460 # temperature of side-walk in degree Rankine\n",
"T_inf=20+460 # temperature of ambient air in degree Rankine\n",
"T_r=0 # assuming space temperature to be 0 degree Rankine\n",
"\n",
"#Calculation\n",
"# LHS of the form a*Tw+b*Tw**4=c\n",
"a=((k/L)+hc) #Coefficient of Tw in the equation\n",
"b=(sigma*ew*f_wr) #Coefficient of Tw**4 in the equation\n",
"c=(k*T1/L)+(hc*T_inf)+(sigma*f_wr*ew*T_r**4) #right hans side of the equation\n",
"#Soving by try and error\n",
"Tw1=470 #assumed first value of temprature\n",
"LHS1=a*Tw1+b*Tw1**4\n",
"Tw2=480 #assumed 2nd value of temprature\n",
"LHS2=a*Tw2+b*Tw2**4\n",
"Tw3=490 #assumed 3rd value of temprature\n",
"LHS3=a*Tw3+b*Tw3**4\n",
"Tw4=485 #assumed 4th value of temprature\n",
"LHS4=a*Tw4+b*Tw4**4\n",
"Tw5=484.5 #assumed fifth value of temprature\n",
"LHS5=a*Tw5+b*Tw5**4\n",
"\n",
"#result\n",
"print\"RHS\",round(c,1)\n",
"print\"LHS at surface Temprature 1=\",round(LHS1,1)\n",
"print\"LHS at surface Temprature 2=\",round(LHS2,1)\n",
"print\"LHS at surface Temprature 3=\",round(LHS3,0)\n",
"print\"LHS at surface Temprature 4=\",round(LHS4,1)\n",
"print\"LHS at surface Temprature 5=\",round(LHS5,1)\n",
"print\"\\nLHS is close enough to RHS at Temprature 484.5. So Surface Temprature is\",Tw5,\"R\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"RHS 2418.5\n",
"LHS at surface Temprature 1= 2339.4\n",
"LHS at surface Temprature 2= 2394.4\n",
"LHS at surface Temprature 3= 2450.0\n",
"LHS at surface Temprature 4= 2422.0\n",
"LHS at surface Temprature 5= 2419.2\n",
"\n",
"LHS is close enough to RHS at Temprature 484.5. So Surface Temprature is 484.5 R\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|