summaryrefslogtreecommitdiff
path: root/Engineering_Economics/Chapter2.ipynb
blob: e29c54c23eacf8a294acbc39a150a46da96ce120 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
{
 "metadata": {
  "name": "",
  "signature": "sha256:579288a5e0685252a970b36dc99c069cd7fb91e6e042c88d50d8eb0615ccf38d"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Elementary Economic Analysis"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.1 Page 16"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initialisation of variable\n",
      "#Part a \n",
      "w1=1.2;#in Kg\n",
      "c1=80.0;#cost of making aluminium casting in Rs/Kg\n",
      "c2=150.0;#ost of machining aluminium casting per unit in Rs\n",
      "\n",
      "#calculation\n",
      "Tc1=c1*w1+c2;#Total cost of jet engine part made of aluminium per unit in Rs\n",
      "\n",
      "#result\n",
      "print \"Total cost of jet engine part made of aluminium per unit in Rs \",round(Tc1,3)\n",
      "\n",
      "#Part b \n",
      "w2=1.35;#in Kg\n",
      "c1=35.0;#in Rs/Kg\n",
      "c2=170.0;#in Rs\n",
      "c3=1300.0;#in Rs/Kg\n",
      "\n",
      "#calculation\n",
      "Tc2=c1*w2+c2+c3*(w2-w1);#in Rs\n",
      "\n",
      "#result\n",
      "print \"Total cost of jet engine part made of steel per unit in Rs : \",round(Tc2,3);\n",
      "print \"DECISION : The total cost/unit of a jet engine part made of aluminium is less than that for an engine made of steel. Hence, aluminium is suggested for making jet engine part. The economic advantage of aluminium over steel per unit in Rs  \",round(Tc2-Tc1,3)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Total cost of jet engine part made of aluminium per unit in Rs  246.0\n",
        "Total cost of jet engine part made of steel per unit in Rs :  412.25\n",
        "DECISION : The total cost/unit of a jet engine part made of aluminium is less than that for an engine made of steel. Hence, aluminium is suggested for making jet engine part. The economic advantage of aluminium over steel per unit in Rs   166.25\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2, Page 17"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initialisation of variable\n",
      "#Part a \n",
      "wood=0.1;#in m^3\n",
      "WoodCost=12000.0;#in Rs/m^3\n",
      "Table=1;#in units\n",
      "TableTopCost=3000.0;#in Rs/unit\n",
      "LegBushes=4.0;#units\n",
      "LegBushesCost=10.0;#Rs/units\n",
      "Nails=100.0;#in grams\n",
      "NailsCost=300.0;#in Rs/Kg\n",
      "TotalLabour=15.0;#in Hours\n",
      "TotalLabourCost=50.0;#in Rs/Hours\n",
      "\n",
      "#calcualtion\n",
      "WoodCostframelegs=WoodCost*wood;#in Rs\n",
      "WoodTopCost=3000.0;#in Rs\n",
      "BushesCost=LegBushesCost*LegBushes;#in Rs\n",
      "NailsCost=Nails*NailsCost/1000;#in Rs\n",
      "LabourCost=TotalLabourCost*TotalLabour;#in Rs\n",
      "TotalCost1=WoodCostframelegs+WoodTopCost+BushesCost+NailsCost+LabourCost;#in Rs\n",
      "\n",
      "#result\n",
      "print \"Cost of Table with wooden top in Rs \",round(TotalCost1,3)\n",
      "\n",
      "#given data for table with granite top\n",
      "#Part b \n",
      "wood=0.15;#in m^3\n",
      "WoodCost=12000.0;#in Rs/m^3\n",
      "Granite=1.62;#in m^2\n",
      "GraniteCost=800.0;#in Rs/m^2\n",
      "LegBushes=4.0;#units\n",
      "LegBushesCost=25.0;#Rs/units\n",
      "Nails=50.0;#in grams\n",
      "NailsCost=300.0;#in Rs/Kg\n",
      "TotalLabour=8.0;#in Hours\n",
      "TotalLabourCost=50.0;#in Rs/Hours\n",
      "\n",
      "\n",
      "WoodCostframelegs=WoodCost*wood;#in Rs\n",
      "GraniteTopCost=Granite*GraniteCost;#in Rs\n",
      "BushesCost=LegBushesCost*LegBushes;#in Rs\n",
      "NailsCost=Nails*NailsCost/1000;#in Rs\n",
      "LabourCost=TotalLabourCost*TotalLabour;#in Rs\n",
      "TotalCost2=WoodCostframelegs+GraniteTopCost+BushesCost+NailsCost+LabourCost;#in Rs\n",
      "\n",
      "#result\n",
      "print \"Cost of Table with Granite top in Rs \",round(TotalCost2,3);\n",
      "print \"Economic advantage of table with granite top in Rs  \",round(TotalCost1-TotalCost2,3)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Cost of Table with wooden top in Rs  5020.0\n",
        "Cost of Table with Granite top in Rs  3611.0\n",
        "Economic advantage of table with granite top in Rs   1409.0\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.3 Page 19"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initialisation of variable\n",
      "#design A\n",
      "LatheCost=200.0;#in Rs/hour\n",
      "grinderCost=150.0;#in Rs/hour\n",
      "HoursOfLathe=16.0;#in hours/1000Unit\n",
      "HoursOfGrinder=4.5;#in hours/1000Unit\n",
      "\n",
      "#calcualtion\n",
      "TotalCostA=LatheCost*HoursOfLathe+grinderCost*HoursOfGrinder;#in Rs/1000unit\n",
      "\n",
      "#result\n",
      "print \"Total cost of design A per 100,000 units  \",round(TotalCostA*100000.0/1000,3);\n",
      "\n",
      "# Design B\n",
      "HoursOfLathe=7.0;#in hours/1000Unit\n",
      "HoursOfGrinder=12.0;#in hours/1000Unit\n",
      "TotalCostB=LatheCost*HoursOfLathe+grinderCost*HoursOfGrinder;#in Rs/1000unit\n",
      "\n",
      "#result\n",
      "print \"Total cost of design A per 100,000 units\",round(TotalCostB*100000.0/1000,3);\n",
      "print \"Economic advantage of design B over design A per 100,000 units in Rs  \",round(TotalCostA-TotalCostB,3)*100;"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Total cost of design A per 100,000 units   387500.0\n",
        "Total cost of design A per 100,000 units 320000.0\n",
        "Economic advantage of design B over design A per 100,000 units in Rs   67500.0\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.4,Page 20"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initialisation of variable\n",
      "from math import pi\n",
      "Tanks=4.0;#units\n",
      "TankDia=5.2;#in meter\n",
      "\n",
      "#calcualtion\n",
      "TankRad=TankDia/2;#in meters\n",
      "TankHeight=7;#in meters\n",
      "HeightDiaRatio=TankHeight/TankDia;#unitless\n",
      "VolPerTank=(22/7)*TankRad**2*TankHeight;#in m^3\n",
      "h=VolPerTank/(pi)*64;#in meters\n",
      "r=h/8;#in meters\n",
      "d=2*r;#in meters\n",
      "CostNewDesign=900000*(100.0/111);#in Rs\n",
      "\n",
      "#result\n",
      "print \"Expected savings by redesign in Rs  \",round(900000-CostNewDesign,3);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Expected savings by redesign in Rs   89189.189\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.5,Page 21"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initialisation of variable\n",
      "#steel frame\n",
      "distance=2500.0;#in Km\n",
      "TransCost=1.0;#in Rs/Kg/100Km\n",
      "SteelFramePrice=1000.0;#in Rs/Unit\n",
      "SteelFrameWeight=75.0;#in Kg/Unit\n",
      "\n",
      "#calculation\n",
      "TotalCost1=SteelFramePrice+TransCost*SteelFrameWeight*distance/100;#in Rs\n",
      "\n",
      "#result\n",
      "print \"Total cost of steel window frame per unit in Rs  \",round(TotalCost1,3);\n",
      "\n",
      "# Aluminium window frame\n",
      "AlumilniumFramePrice=1500.0;#in Rs/Unit\n",
      "AlumilniumFrameWeight=28.0;#in Kg/Unit\n",
      "\n",
      "#calculation\n",
      "TotalCost2=AlumilniumFramePrice+TransCost*AlumilniumFrameWeight*distance/100;#in Rs\n",
      "\n",
      "#result\n",
      "print \"Total cost of Alumilnium window frame per unit in Rs \",round(TotalCost2,3);\n",
      "print \"DECISION : The total cost per unit of the aluminium window frame is less than that of steel window frame. Hence, Alumilnium window frame is recommended. The Economic advantage per unit of the Alumilnium window frame over steel window frame in Rs  \",round(TotalCost1-TotalCost2,3)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Total cost of steel window frame per unit in Rs   2875.0\n",
        "Total cost of Alumilnium window frame per unit in Rs  2200.0\n",
        "DECISION : The total cost per unit of the aluminium window frame is less than that of steel window frame. Hence, Alumilnium window frame is recommended. The Economic advantage per unit of the Alumilnium window frame over steel window frame in Rs   675.0\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.6,Page 23"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#initialisation of variable\n",
      "#Cost of component using process sequence 1\n",
      "print\"The process sequence 1 of the component is as follows : Turning - Milling - Shaping - Drilling\" ;\n",
      "print \"Calculations are summarized in form of table below : \";\n",
      "print \"Operation     Operation       Time       Machine Hour rate     Cost\";\n",
      "print \"   No.                     Min    Hour           Rs.             Rs.\";\n",
      "print \"   1           Turning       5   0.083          200           16.60\";\n",
      "print \"   2           Milling       8   0.133          400           53.20\";\n",
      "print \"   3          Shapiing      10   0.167          350           58.45\";\n",
      "print \"   4          Drilling       3   0.050          300           15.00\";\n",
      "print \"                                                   Total     143.25\";\n",
      "\n",
      "#Cost of component using process sequence 2\n",
      "print \"The process sequence 2 of the component is as follows : Turning - Milling - Drilling\" ;\n",
      "print \"Calculations are summarized in form of table below : \";\n",
      "print \"Operation     Operation       Time       Machine Hour rate     Cost\";\n",
      "print \"   No.                     Min    Hour           Rs.             Rs.\";\n",
      "print \"   1           Turning       5   0.083          200           16.60\";\n",
      "print \"   2           Milling      14   0.233          400           93.20\";\n",
      "print \"   4          Drilling       3   0.050          300           15.00\";\n",
      "print \"                                                   Total     124.80\";\n",
      "\n",
      "#Cost of component using process sequence 3\n",
      "print \"The process sequence 3 of the component is as follows : Only CNC operations\" ;\n",
      "print \"Calculations are summarized in form of table below : \";\n",
      "print \"Operation     Operation       Time       Machine Hour rate     Cost\";\n",
      "print \"   No.                     Min    Hour           Rs.             Rs.\";\n",
      "print \"   1             CNC         8   0.133         1000             133\";\n",
      "\n",
      "print \"The process sequence 2 has the least cost. Therefore, it should be selected for manufacturing the component.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The process sequence 1 of the component is as follows : Turning - Milling - Shaping - Drilling\n",
        "Calculations are summarized in form of table below : \n",
        "Operation     Operation       Time       Machine Hour rate     Cost\n",
        "   No.                     Min    Hour           Rs.             Rs.\n",
        "   1           Turning       5   0.083          200           16.60\n",
        "   2           Milling       8   0.133          400           53.20\n",
        "   3          Shapiing      10   0.167          350           58.45\n",
        "   4          Drilling       3   0.050          300           15.00\n",
        "                                                   Total     143.25\n",
        "The process sequence 2 of the component is as follows : Turning - Milling - Drilling\n",
        "Calculations are summarized in form of table below : \n",
        "Operation     Operation       Time       Machine Hour rate     Cost\n",
        "   No.                     Min    Hour           Rs.             Rs.\n",
        "   1           Turning       5   0.083          200           16.60\n",
        "   2           Milling      14   0.233          400           93.20\n",
        "   4          Drilling       3   0.050          300           15.00\n",
        "                                                   Total     124.80\n",
        "The process sequence 3 of the component is as follows : Only CNC operations\n",
        "Calculations are summarized in form of table below : \n",
        "Operation     Operation       Time       Machine Hour rate     Cost\n",
        "   No.                     Min    Hour           Rs.             Rs.\n",
        "   1             CNC         8   0.133         1000             133\n",
        "The process sequence 2 has the least cost. Therefore, it should be selected for manufacturing the component.\n"
       ]
      }
     ],
     "prompt_number": 13
    }
   ],
   "metadata": {}
  }
 ]
}