1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
|
{
"metadata": {
"name": "",
"signature": "sha256:391691e121c70cb2c3ed1568e4e37abc97da81f07c5711ed04593a3ca2ce50ba"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter6-Heat transfer equipment\n"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg142"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.1\n",
"print('Example 6.1');\n",
"print('Page No. 142');\n",
"\n",
"## given\n",
"L = 2.5;## Length of tubes in metre\n",
"Do = 10*10**-3;## Internal diameter of tubes in metre\n",
"m = 3.46;## mass flow rate in kg/s\n",
"Th = 120.;## Temperature of condening steam in degree celcius\n",
"Tl_i = 20.;## Inlet temperature of liquid in degree celcius\n",
"Tl_o = 80.;## Outlet temperature of liquid in degree celcius\n",
"Cp = 2.35*10**3;## Specific heat capacity of liquid in J/kg-K\n",
"U = 950.;## Overall heat transfer coefficent in W/m**2-K\n",
"\n",
"T1 = Th- Tl_i;## in degree celcius\n",
"T2 = Th- Tl_o;## in degree celcius\n",
"Tm = ((T2-T1)/math.log(T2/T1));## logarithmic mean temperature of pipe in degree celcius\n",
"a = math.pi*Do*L;##Surface area per tube in m**2\n",
"A = ((m*Cp*(Tl_o - Tl_i))/(U*Tm));## in m**2\n",
"N = A/a;\n",
"print'%s %.2f %s'%('The number of tubes required is',N,'')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.1\n",
"Page No. 142\n",
"The number of tubes required is 99.85 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg142"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.2\n",
"print('Example 6.2');\n",
"print('Page No. 142');\n",
"\n",
"## given\n",
"v = 1.50;## velocity in m/s\n",
"N_t = 100.;## Number of tubes\n",
"Do = 10*10**-3;## Internal diameter of tubes in metre\n",
"m = 3.46;## mass flow rate in kg/s\n",
"p = 1180.;## density in kg/m**3\n",
"\n",
"A = (N_t*math.pi*Do**2)/4.;## otal cross-sectional area in m**2\n",
"V = m/p;##Volumetric flow rate in m**3/s\n",
"Fv = V/A;## Fluid velocity in m/s\n",
"N_p = v/Fv;\n",
"print'%s %.2f %s'%('the number of passes is',N_p,'')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.2\n",
"Page No. 142\n",
"the number of passes is 4.02 \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg144"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.3\n",
"print('Example 6.3');\n",
"print('Page No. 144');\n",
"\n",
"## given\n",
"Th_i = 130.;##Inlet temperature of hot liquid in degree celcius \n",
"Th_o = 90.;## Outlet temperature of hot liquid in degree celcius\n",
"Tc_i = 20.;## Inlet temperature of cold liquid in degree celcius\n",
"Tc_o = 50.;## Outlet temperature of cold liquid in degree celcius\n",
"\n",
"##For Couter-current flow\n",
"T1 = Th_i - Tc_o;\n",
"T2 = Th_o - Tc_i;\n",
"Tm_1 = ((T2-T1)/math.log(T2/T1));\n",
"print'%s %.2f %s'%('The logarithmic mean temperature difference for counter-current flow ',Tm_1,' degree celcius')\n",
"\n",
"\n",
"##For Co-current flow\n",
"T3 = Th_i - Tc_i;\n",
"T4 = Th_o - Tc_o;\n",
"Tm_2 = ((T3-T4)/math.log(T3/T4));\n",
"print'%s %.2f %s'%('The logarithmic mean temperature difference for co-current flow is ',Tm_2,' degree celcius ')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.3\n",
"Page No. 144\n",
"The logarithmic mean temperature difference for counter-current flow 74.89 degree celcius\n",
"The logarithmic mean temperature difference for co-current flow is 69.20 degree celcius \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg147"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.4\n",
"print('Example 6.4');\n",
"print('Page No. 147');\n",
"\n",
"## given\n",
"F = 1.;## Fuel feed required in kg\n",
"##By ultimate analysis of feed\n",
"C = 0.86;## Carbon percentage - [%]\n",
"H2 = 0.05;## Hydrogen percentage - [%]\n",
"S = 0.001;## Sulphur percentage - [%]\n",
"O2 = 0.08;## Oxygen percentage - [%]\n",
"\n",
"w_C = 12.; ## mol. weight of C\n",
"w_H2 = 2.; ##mol. weight of H2\n",
"w_O2 = 32.; ## mol. weight of O2\n",
"w_S = 32.; ##mol. weight of S\n",
"##Basis- Per kg of fuel\n",
"mol_C = C / w_C;## kmol of C\n",
"mol_H2 = H2 /w_H2;##kmol of H2\n",
"mol_O2 = O2 /w_O2;##kmol of O2\n",
"mol_S = S /w_S;##kmol of S\n",
"##Calculation of excess air\n",
"C_req = mol_C*1.;##O2 required by entering C given by reaction C+O2->CO2 in kmol\n",
"H_req = mol_H2*0.5;##O2 required by entering H2 given by reaction H2+(1/2)O2->H20 in kmol\n",
"S_req = mol_S*1.;##O2 required by entering S given by reaction S+O2->SO2 in kmol\n",
"O2_req = (C_req + H_req + S_req) - mol_O2;## in kmol\n",
"print'%s %.2f %s'%('Total number of kmol of O2 required per kg of fuel is',O2_req, 'kmol ')\n",
"m_O2 = O2_req*w_O2;## Mass of O2 required per kg of fuel\n",
"print'%s %.2f %s'%('Mass of O2 required per kg of fuel is ',m_O2,' kg ')\n",
"##Calculation of air\n",
"m_air = m_O2/0.232;## in kg\n",
"print'%s %.2f %s'%('Mass of air required per kg of fuel is ',m_air,' kg ')\n",
"##Considering air as an ideal gas,calculating volume of air by ideal gas equation-P*V = n*R*T\n",
"R = 8310;##Universal gas constant in J/kmol-K\n",
"T = (273+20);## in K\n",
"P = 1.013*10**5;## in N/m**2\n",
"n = 1;## 1 kmol of air\n",
"V_kmol = (n*R*T)/P;## In m**3/kmol\n",
"M_air = 29;## Mol. weight of air\n",
"V_kg = V_kmol/M_air;## in m**3/kg\n",
"V_air = m_air*V_kg;## in m**3\n",
"print'%s %.2f %s'%('Volume of air required is ',V_air,' m^3 ')\n",
"##Deviation in answer is due to some approximation in calculation in the book\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.4\n",
"Page No. 147\n",
"Total number of kmol of O2 required per kg of fuel is 0.08 kmol \n",
"Mass of O2 required per kg of fuel is 2.61 kg \n",
"Mass of air required per kg of fuel is 11.27 kg \n",
"Volume of air required is 9.34 m^3 \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg148"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.5\n",
"print('Example 6.5');\n",
"print('Page No. 148');\n",
"\n",
"## given\n",
"F = 1.;## Weight of coal in kg\n",
"##By analysis of coal in weight basis\n",
"C = 0.74;## Carbon percentage - [%]\n",
"H2 = 0.05;## Hydrogen percentage - [%]\n",
"S = 0.01;## Sulphur percentage - [%]\n",
"N2 = 0.001;## Nitrogen percentage - [%]\n",
"O2 = 0.05;## Oxygen percentage - [%]\n",
"H20 = 0.09;## Moisture percentage - [%]\n",
"Ash = 0.05;## Ash percentage - [%]\n",
"\n",
"w_C = 12.; ## mol. weight of C\n",
"w_H2 = 2.; ##mol. weight of H2\n",
"w_O2 = 32.; ## mol. weight of O2\n",
"w_S = 32.; ##mol. weight of S\n",
"##Basis- Per kg of fuel\n",
"mol_C = C / w_C;## kmol of C\n",
"mol_H2 = H2 /w_H2;##kmol of H2\n",
"mol_O2 = O2 /w_O2;##kmol of O2\n",
"mol_S = S /w_S;##kmol of S\n",
"##Calculation of excess air\n",
"C_req = mol_C*1;##O2 required by entering C given by reaction C+O2->CO2 in kmol\n",
"H_req = mol_H2*0.5;##O2 required by entering H2 given by reaction H2+(1/2)O2->H20 in kmol\n",
"S_req = mol_S*1;##O2 required by entering S given by reaction S+O2->SO2 in kmol\n",
"O2_req = (C_req + H_req + S_req) - mol_O2;## Total number of kmol of O2 required per kg of fuel in kmol\n",
"m_O2 = O2_req*w_O2;## Mass of O2 required per kg of fuel\n",
"print'%s %.2f %s'%('Mass of O2 required per kg of fuel is ',m_O2,' kg ')\n",
"##Calculation of air\n",
"m_air = m_O2/0.232;## in kg\n",
"print'%s %.2f %s'%('Mass of air required per kg of fuel is',m_air,' kg ')\n",
"##Considering air as an ideal gas,calculating volume of air by ideal gas equation-P*V = n*R*T\n",
"R = 8310.;##Universal gas constant in J/kmol-K\n",
"T = (273.+0);## in K\n",
"P = 1.013*10**5;## in N/m**2\n",
"n = 1;## 1 kmol of air\n",
"V_kmol = (n*R*T)/P;## In m**3/kmol\n",
"M_air = 29.;## Mol. weight of air\n",
"V_kg = V_kmol/M_air;## in m**3/kg\n",
"V_air = m_air*V_kg;## in m**3\n",
"print'%s %.2f %s'%('Volume of air required is ',V_air,' m^3')\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.5\n",
"Page No. 148\n",
"Mass of O2 required per kg of fuel is 2.33 kg \n",
"Mass of air required per kg of fuel is 10.06 kg \n",
"Volume of air required is 7.77 m^3\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg149"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.9\n",
"print('Example 6.9');\n",
"print('Page No. 157');\n",
"\n",
"## given\n",
"P = 10.;## Boiler pressure in bar\n",
"Ts = 180.;## Steam temperature in degree celcius\n",
"Tf = 80.;## Feed water temperature in degree celcius\n",
"X = 0.95;## Steam dryness fraction\n",
"m_s = 4100.;## steam rate in kg/h\n",
"m_f = 238.;## Gas rate in kg/h\n",
"G_CV = 53.5*10**6.;## In J/kg\n",
"N_CV = 48*10**6.;##in J/kg\n",
"\n",
"##from steam table,AT 10 bar and at temperature T = Ts\n",
"h2 = (763.+(X*2013.))*10**3;##Specific enthalpy of steam in J/kg\n",
"##At temperature T = Tf\n",
"h1 = 335.*10**3;##Specific enthalpy of feed steam in J/kg\n",
"\n",
"E_G = ((m_s*(h2-h1)*100)/(m_f*G_CV));##\n",
"print'%s %.2f %s'%('The gross efficiency percentage is',E_G,'')\n",
"\n",
"\n",
"E_N = ((m_s*(h2-h1)*100)/(m_f*N_CV));##\n",
"print'%s %.2f %s'%('The net efficiency percentage is ',E_N,'')\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.9\n",
"Page No. 157\n",
"The gross efficiency percentage is 75.36 \n",
"The net efficiency percentage is 83.99 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg150"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.7\n",
"print('Example 6.7');\n",
"print('Page No. 150');\n",
"\n",
"## given\n",
"F = 1;## Weight of fuel in kg\n",
"e = 0.5;## excess air percentage\n",
"C = 0.74;## Mass of Carbon in kg\n",
"H2 = 0.05;## Mass of Hydrogen in kg\n",
"S = 0.01;## Mass of Sulphur in kg\n",
"N2 = 0.001;##Mass of Nitrogen in kg\n",
"O2 = 0.05;## Mass of Oxygen in kg\n",
"H2O = 0.09;## Mass of Moisture in kg\n",
"Ash = 0.05;## Mass of Ash in kg\n",
"\n",
"w_C = 12.; ## mol. weight of C\n",
"w_H2 = 2.; ##mol. weight of H2\n",
"w_O2 = 32.; ## mol. weight of O2\n",
"w_S = 32.; ##mol. weight of S\n",
"w_N2 = 28.;## mol. weight of N2\n",
"w_H20 = 18.;## mol. weight of H2O\n",
"##Basis- Per kg of fuel\n",
"mol_C = C / w_C;## kmol of C\n",
"mol_H2 = H2 /w_H2;##kmol of H2\n",
"mol_O2 = O2 /w_O2;##kmol of O2\n",
"mol_S = S /w_S;##kmol of S\n",
"mol_N2 = N2 /w_N2;##kmol of N2\n",
"mol_H2O = H2O /w_H20;##kmol of H20\n",
"\n",
"##By kmol of product\n",
"CO2 = mol_C*1.;## CO2 formed by the reaction C + O2 -> CO2\n",
"H2O_air = mol_H2*1.;## H2O formed by the reaction H2 + (1/2)O2 -> H2O\n",
"SO2 = mol_S*1.;## SO2 formed by the reaction S + O2 -> SO2\n",
"Pdt = CO2 + H2O_air + SO2 + mol_N2 + mol_H2O;## Total kmol of combustion products in kmol\n",
"##Calculation of excess air\n",
"C_req = mol_C*1;##O2 required by entering C given by reaction C+O2->CO2 in kmol\n",
"H_req = mol_H2*0.5;##O2 required by entering H2 given by reaction H2+(1/2)O2->H20 in kmol\n",
"S_req = mol_S*1;##O2 required by entering S given by reaction S+O2->SO2 in kmol\n",
"O2_req = (C_req + H_req + S_req) - mol_O2;## Total number of kmol of O2 required per kg of fuel in kmol\n",
"\n",
"Ex_O2 = O2_req*e;## Amount of excess oxygen in kmol\n",
"\n",
"N2_air = (O2_req*(1+e)*79.)/21.;## in kmol (considering air consists of 79% N2 and 21% O2 by moles)\n",
"N2_flue = mol_N2 + N2_air;## Total N2 in flue gas in kmol\n",
"H2O_flue = mol_H2O+ H2O_air;## Total H2O in flue gas in kmol\n",
"\n",
"T_wet = CO2 + H2O_flue + SO2 + Ex_O2 + N2_flue;##Total components of flue gas on a wet basis in kmol\n",
"T_dry = CO2 + SO2 + Ex_O2 + N2_flue;##Total components of flue gas on a dry basis in kmol\n",
"H2O_dry = 0;\n",
"C_wet = ((CO2 / T_wet)*100.);## in percentage \n",
"H_wet = ((H2O_flue/T_wet)*100.);## in percentage \n",
"S_wet = ((SO2/T_wet)*100.);## in percentage \n",
"N_wet = ((N2_flue/T_wet)*100.);## in percentage \n",
"O_wet = ((Ex_O2/T_wet)*100);## in percentage \n",
"\n",
"C_dry = ((CO2 / T_dry)*100.);## in percentage \n",
"H_dry = ((H2O_dry/T_dry)*100.);## in percentage\n",
"S_dry = ((SO2/T_dry)*100.);## inpercentage\n",
"N_dry = ((N2_flue/T_dry)*100.);## in percentage\n",
"O_dry =((Ex_O2/T_dry)*100.);## in percentage\n",
"T1 = C_wet + H_wet + S_wet + N_wet +O_wet;## in percentage\n",
"T2 = C_dry + S_dry + N_dry + O_dry;## in percentage\n",
"\n",
"print('components\\t\\t\\t\\t\\t\\t kmol \\t\\t\\t\\t\\t\\t % Composition by volume' '\\n\\n\\n')\n",
"print('\\t wet \\t\\t dry \\t\\t\\t\\t wet \\t\\t dry ')\n",
"print'%s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t'and '',CO2,'' '\\t\\t' '',CO2,'' '\\t\\t\\t\\t' '',C_wet,'' and '\\t\\t\\t\\t' '\\t\\t\\t\\t',C_dry,' \\t\\t\\t\\t ')#and '',CO2,'' and '',C_wet,'' and '',C_dry,'')\n",
"print'%s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t' and '',H2O_flue,'' '\\t\\t' '',H2O_dry,'' '\\t\\t\\t\\t' '',H_wet,'' '\\t\\t\\t\\t' '',H_dry,'')\n",
"print'%s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t' and '',SO2,'' '\\t\\t' '',SO2,'' '\\t\\t\\t\\t' '',S_wet,'' '\\t\\t\\t\\t' '',S_dry,'')\n",
"print'%s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t'and '',N2_flue,' ''\\t\\t' '',N2_flue,'' '\\t\\t\\t\\t' '',N_wet,'' '\\t\\t\\t\\t' '',N_dry,'')\n",
"print'%s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t' and '',Ex_O2,'' '\\t\\t' '',Ex_O2,'' '\\t\\t\\t\\t' '',O_wet,'' '\\t\\t\\t\\t' '',O_dry,'')\n",
"print'%s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t'and '',T_wet,'' '\\t\\t' '',T_dry,'' '\\t\\t\\t\\t' '',T1,'' '\\t\\t\\t\\t' '',T2,'')\n",
"\n",
"\n",
"\n",
"#printf('\\t\\t kmol \\t\\t percent composition by volume\\n Component \\t Wet \\t Dry \\t\\t Wet \\t Dry \\n CO2 \\t %.4f %.4f \\t\\t %.1f \\t %.1f \\n H2O \\t %.4f %.0f \\t\\t\\t %.1f \\t\\t %.1f \\n SO2 \\t %.4f %.4f \\t\\t %.1f \\t\\t %.1f \\n N2 \\t\\t %.4f %.4f \\t\\t %.1f \\t %.1f \\n O2 \\t\\t %.4f %.4f \\t\\t %.1f \\t\\t %.1f \\n TOTAL \\t %.4f %.4f \\t\\t %.0f \\t\\t %.0f'\n",
"#\t,CO2,CO2,C_wet,C_dry,H2O_flue, H2O_dry,H_wet,H_dry,\n",
"#SO2,SO2,S_wet,S_dry,N2_flue, N2_flue,N_wet,N_dry,Ex_O2,Ex_O2,O_wet,O_dry,T_wet,T_dry,T1,T2)\n",
"#//Deviation in answes is due to some calculation approxiamation in the book.\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.7\n",
"Page No. 150\n",
"components\t\t\t\t\t\t kmol \t\t\t\t\t\t % Composition by volume\n",
"\n",
"\n",
"\n",
"\t wet \t\t dry \t\t\t\t wet \t\t dry \n",
" 0.06 \t\t 0.06 \t\t\t\t 11.42 12.09 \t\t\t\t \n",
" 0.03 \t\t 0.00 \t\t\t\t 5.56 \t\t\t\t 0.00 \n",
" 0.00 \t\t 0.00 \t\t\t\t 0.06 \t\t\t\t 0.06 \n",
" 0.41 \t\t 0.41 \t\t\t\t 76.21 \t\t\t\t 80.70 \n",
" 0.04 \t\t 0.04 \t\t\t\t 6.75 \t\t\t\t 7.15 \n",
" 0.54 \t\t 0.51 \t\t\t\t 100.00 \t\t\t\t 100.00 \n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg156"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.8\n",
"print('Example 6.8');\n",
"print('Page No. 156');\n",
"\n",
"## given\n",
"H = 0.05;## Hydrogen percentage - [%]\n",
"O = 0.08;## Oxygen percentage - [%]\n",
"C = 0.86;## Carbon percentage - [%]\n",
"S = 0.001;## Sulphur percentage - [%]\n",
"\n",
"G_CV = ((33.9*C)+143*(H-(O/8.))+(9.1*S))*10**6;\n",
"print'%s %.2f %s'%('The gross calorific value is ',G_CV,' J/kg ')\n",
"\n",
"\n",
"N_CV = ((33.9*C)+121*(H-(O/8.))+(9.1*S))*10**6.;\n",
"print'%s %.2f %s'%('The net calorific value is ',N_CV,' J/kg')\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.8\n",
"Page No. 156\n",
"The gross calorific value is 34883100.00 J/kg \n",
"The net calorific value is 34003100.00 J/kg\n"
]
}
],
"prompt_number": 36
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg157"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.9\n",
"print('Example 6.9');\n",
"print('Page No. 157');\n",
"\n",
"## given\n",
"P = 10.;## Boiler pressure in bar\n",
"Ts = 180.;## Steam temperature in degree celcius\n",
"Tf = 80.;## Feed water temperature in degree celcius\n",
"X = 0.95;## Steam dryness fraction\n",
"m_s = 4100.;## steam rate in kg/h\n",
"m_f = 238.;## Gas rate in kg/h\n",
"G_CV = 53.5*10**6.;## In J/kg\n",
"N_CV = 48*10**6.;##in J/kg\n",
"\n",
"##from steam table,AT 10 bar and at temperature T = Ts\n",
"h2 = (763.+(X*2013.))*10**3;##Specific enthalpy of steam in J/kg\n",
"##At temperature T = Tf\n",
"h1 = 335.*10**3;##Specific enthalpy of feed steam in J/kg\n",
"\n",
"E_G = ((m_s*(h2-h1)*100)/(m_f*G_CV));##\n",
"print'%s %.2f %s'%('The gross efficiency percentage is',E_G,'')\n",
"\n",
"\n",
"E_N = ((m_s*(h2-h1)*100)/(m_f*N_CV));##\n",
"print'%s %.2f %s'%('The net efficiency percentage is ',E_N,'')\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.9\n",
"Page No. 157\n",
"The gross efficiency percentage is 75.36 \n",
"The net efficiency percentage is 83.99 \n"
]
}
],
"prompt_number": 31
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg 158"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.10\n",
"print('Example 6.10');\n",
"print('Page No. 158');\n",
"\n",
"## given\n",
"##for Boiler-1\n",
"P_1 = 15.;## Boiler pressure in bar\n",
"Ts_1 = 300.;## Steam temperature in degree celcius\n",
"Tf_1 = 80.;## Feed water temperature in degree celcius\n",
"X_1 = 0.;## Steam dryness fraction\n",
"m_s1 = 9000.;## steam rate in kg/h\n",
"m_f1 = 700.;## Gas rate in kg/h\n",
"G_CV1 = 43.0*10**6;## In J/kg\n",
"##from steam table,at P = 15 bar and at given temperatures\n",
"h2_1 = 3039.*10**3;##Specific enthalpy of steam in J/kg\n",
"h1_1 = 335.*10**3;##Specific enthalpy of feed steam in J/kg\n",
"\n",
"E_G1 = ((m_s1*(h2_1-h1_1)*100.)/(m_f1*G_CV1));##\n",
"print'%s %.2f %s'%('The gross efficiency percentage is ',E_G1,'')\n",
"Ee_1 = ((m_s1/m_f1)*(h2_1-h1_1))/(2257*10**3);\n",
"print'%s %.2f %s'%('the equivalent evaporation for boiler-1 is',Ee_1,' kg ')\n",
"\n",
"##for Boiler-2\n",
"P_2 = 10.;## Boiler pressure in bar\n",
"Ts_2 = 180.;## Steam temperature in degree celcius\n",
"Tf_2 = 60.;## Feed water temperature in degree celcius\n",
"X_2 = 0.96;## Steam dryness fraction\n",
"m_s2 = 7000.;## steam rate in kg/h\n",
"m_f2 = 510.;## Gas rate in kg/h\n",
"G_CV2 = 43.0*10**6.;## In J/kg\n",
"##from steam table,AT 10 bar and at temperature T = Ts_2\n",
"h2 = (763.+(X_2*2013.))*10**3.;##Specific enthalpy of steam in J/kg\n",
"##At temperature T = Tf_2\n",
"h1 = 251.*10**3.;##Specific enthalpy of feed steam in J/kg\n",
"\n",
"E_G2 = ((m_s2*(h2-h1)*100)/(m_f2*G_CV2));##\n",
"print'%s %.2f %s'%('The gross efficiency percentage is',E_G2,'')\n",
"Ee_2 = ((m_s2/m_f2)*(h2-h1))/(2257*10**3);\n",
"print'%s %.2f %s'%('the equivalent evaporation for boiler-2 is ',Ee_2,' kg')\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.10\n",
"Page No. 158\n",
"The gross efficiency percentage is 80.85 \n",
"the equivalent evaporation for boiler-1 is 15.40 kg \n",
"The gross efficiency percentage is 78.03 \n",
"the equivalent evaporation for boiler-2 is 14.87 kg\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex11-pg167"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.11\n",
"print('Example 6.11\\n\\n');\n",
"print('Page No. 167\\n\\n');\n",
"\n",
"## given\n",
"m = 10.*10**3;## Production of boiler in kg/h\n",
"X = 0.95;##Dryness fraction\n",
"P = 10.;##Pressure ib bar\n",
"T_fw = 95.;## Feed water temperature in degree celcius\n",
"T_mf = 230.;## Mean flue gae temperature in degree celcius\n",
"T_mb = 25.;## Mean boiler house temperature in degree celcius\n",
"Coal_c = 900.;## Coal consumption in kg/h\n",
"A = 0.08;## Ash content in coal\n",
"C_c = 0.15;##carbon content in coal\n",
"CV_coal = 33.50*10**6;## Calorific value of coal in J\n",
"M = 28.;## Mass of flue gas per kg coal in kg\n",
"Cp = 1.05*10**3;## Mean Specific heat capacity of the flue gas in J/kg-K\n",
"CV_c = 34.*10**6;## Calorific value of carbon in J/kg\n",
"\n",
"M_s = m/Coal_c;## Mass of steam produced per kg coal in kg\n",
"H_w = (M_s*(763.+(X*2013.) - 398.)*10**3)/10**6;## Heat absorbed by water per kg coal in 10^6 J(from steam table at given pressure and dryness fraction)\n",
"H_f = (M*Cp*(T_mf - T_mb))/10**6;## Heat in flue gas in 10^6 J \n",
"H_uc = (A*C_c*CV_c)/10**6;##Heat in unburnt carbon in 10^6 J\n",
"h_sup = (CV_coal)/10**6;## Heat supplied by coal in 10^6 J\n",
"un_acc = (h_sup - (H_w + H_f + H_uc));## unaccounted heat losses in 10^6 J\n",
"a = (h_sup/h_sup)*100.;\n",
"b = (H_w/h_sup)*100.;\n",
"c = (H_f/h_sup)*100.;\n",
"d = (H_uc/h_sup)*100.;\n",
"e = (un_acc/h_sup)*100.;\n",
"T = b + c + d + e;\n",
"print(' THERMAL BALANCE SHEET :\\n\\t\\t\\t\\t\\t\\t 10^6 J')\n",
"print'%s %.2f %s %.2f %s '%('percentage',a,'\\t' 'Heat supplied by coal ',h_sup,'')\n",
"print'%s %.2f %s %.2f %s '%('percentage',b,'\\t' 'Heat absorbed by water ',H_w,'' )\n",
"print'%s %.2f %s %.2f %s '%('percentage',c,'\\t' 'Heat in flue gas',H_f,'') \n",
"print'%s %.2f %s %.2f %s '%('percentage',d,'\\t' 'Heat in unburnt carbon',H_uc,'') \n",
"print'%s %.2f %s %.2f %s '%('percentage',e,'\\t' 'unaccounted heat losses',un_acc,'')\n",
"print'%s %.2f %s %.2f %s '%('TOTALpercentage ',T,'\\t' 'TOTAL heat supplied',h_sup,'')\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.11\n",
"\n",
"\n",
"Page No. 167\n",
"\n",
"\n",
" THERMAL BALANCE SHEET :\n",
"\t\t\t\t\t\t 10^6 J\n",
"percentage 100.00 \tHeat supplied by coal 33.50 \n",
"percentage 75.53 \tHeat absorbed by water 25.30 \n",
"percentage 17.99 \tHeat in flue gas 6.03 \n",
"percentage 1.22 \tHeat in unburnt carbon 0.41 \n",
"percentage 5.26 \tunaccounted heat losses 1.76 \n",
"TOTALpercentage 100.00 \tTOTAL heat supplied 33.50 \n"
]
}
],
"prompt_number": 33
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex12-pg168"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.12\n",
"print('Example 6.12');\n",
"print('Page No. 168');\n",
"\n",
"## given\n",
"C_Rate = 2920.;## Coal consumption rate in kg/h\n",
"S_Rate = 22.5*10**3;## Steam consumption rate in kg/h\n",
"Ps = 20.;## Steam pressure in bar\n",
"Ts = 350.;## Steam Temperature in degree celcius\n",
"Tf_in = 70.;## Feed water temperature inlet economiser in degree celcius\n",
"Tf_out = 110.;## Feed water temperature outlet economiser in degree celcius\n",
"Tm_b = 25.;## Mean Boiler house temperature in degree celcius\n",
"Tm_f = 260.;## Mean exit flue gas temperature in degree celcius\n",
"CO2_f = 15.8;## CO2 content of dry exit flue gas by volume\n",
"CO_f = 0.;## CO content of dry exit flue gas by volume\n",
"C_ash = 0.025;## Carbon in ash in [%]\n",
"G = 0.005;## Grit produced in [%]\n",
"##Analysis of coal(as fired)\n",
"M = 0.105;## Moisture [%]\n",
"VM = 0.308;##Volatile matter [%]\n",
"FC = 0.497;## FIxed carbon [%]\n",
"Ash =0.09;## ASh [%]\n",
"C = 0.66;## Carbon percentage - [%]\n",
"H2 = 0.042;## Hydrogen percentage - [%]\n",
"S = 0.015;## Sulphur percentage - [%]\n",
"N2 = 0.012;## Nitrogen percentage - [%]\n",
"O2 = 0.076;## Oxygen percentage - [%]\n",
"H20 = 0.105;## Moisture percentage - [%]\n",
"G_CV = 26.90;## Gross Calorific Value in 10**6 J/kg\n",
"CV_C = 33.8*10**6;## Calorif Value of carbon in J/kg\n",
"CV_G = 33.8*10**6;## Calorif Value of Grit in J/kg\n",
"Ps_l = 20.;## Pressure of steam leaving the boiler in bar\n",
"\n",
"##(a) Calculation of excess air usage\n",
"##(a.1) Theoretical oxygen requirement\n",
"F = 1.;## Fuel feed required in kg\n",
"w_C = 12.; ## mol. weight of C\n",
"w_H2 = 2.; ##mol. weight of H2\n",
"w_S = 32.; ##mol. weight of S\n",
"w_N2 = 28.; ## mol. weight of N2\n",
"w_O2 = 32.; ## mol. weight of O2\n",
"##Basis- Per kg of fuel\n",
"mol_C = C / w_C;## kmol of C\n",
"mol_H2 = H2 /w_H2;##kmol of H2\n",
"mol_S = S /w_S;##kmol of S\n",
"mol_N2 = N2 /w_N2;##kmol of N2\n",
"mol_O2 = O2 /w_O2;##kmol of O2\n",
"##Calculation of excess air\n",
"C_req = mol_C*1;##O2 required by entering C given by reaction C+O2->CO2 in kmol\n",
"H_req = mol_H2*0.5;##O2 required by entering H2 given by reaction H2+(1/2)O2->H20 in kmol\n",
"S_req = mol_S*1;##O2 required by entering S given by reaction S+O2->SO2 in kmol\n",
"O2_req = (C_req + H_req + S_req) - mol_O2;## in kmol\n",
"N2_air = (O2_req*76.8)/23.2;## in kmol (considering air consists of 76.8% N2 and 23.2% O2 )\n",
"print('(a.1) ')\n",
"print'%s %.2f %s'%('Total number of kmol of O2 required per kg of fuel is ',O2_req,' kmol ')\n",
"print'%s %.2f %s'%('N2 associated with O2 is ',N2_air,' kmol ')\n",
"\n",
"##(a.2) Theoretical CO2 content of dry flue gas\n",
"T = C_req + S_req + mol_N2 + N2_air;## Total flue gas in kmol\n",
"CO2 = (C_req/T)*100.;## in [%]\n",
"print('(a.2) ')\n",
"print'%s %.2f %s'%('Theoretical CO2 content of dry flue gas in percentage is ',CO2,' ')\n",
"\n",
"##(a.3)Excess air based on CO2 content\n",
"Ex_air = ((CO2 - CO2_f)/CO2_f)*100.;## in [%]\n",
"print('(a.3) ')\n",
"print'%s %.2f %s'%('Excess air based on CO2 content in percentage is ',math.floor(Ex_air),'')\n",
"\n",
"\n",
"##(b) Fuel gas components\n",
"##(b.1) Composition per kg fuel\n",
"w_CO2 = 44.;## mol. weight of CO2\n",
"w_SO2 = 64.;## mol. weight of SO2\n",
"## FOR DRY GAS\n",
"CO2_d = C_req * w_CO2;## In kg/kg\n",
"SO2_d = S_req * w_SO2;## In kg/kg\n",
"N2_d = mol_N2 * w_N2;## N2 from fuel In kg/kg\n",
"N2_air_d = N2_air * w_N2;## N2 from air In kg/kg\n",
"T_N2 = N2_d + N2_air_d;## In kg/kg\n",
"T_dry = CO2_d + SO2_d + T_N2;## In kg/kg\n",
"print('(b.1) ')\n",
"print('Composition of dry gas ')\n",
"print'%s %.2f %s'%('CO2 ',CO2_d,'')\n",
"print'%s %.2f %s'%('SO2 ',SO2_d,'')\n",
"print'%s %.2f %s'%('N2 from fuel ',N2_d,'')\n",
"print'%s %.2f %s'%('N2 from air ',N2_air_d,'')\n",
"print'%s %.2f %s'%('Total dry air ',T_dry,'kg/kg')\n",
"\n",
"##FOR WET GAS\n",
"w_H2O = 18.;## mol. weight of H2O\n",
"H2O_f = M;## H2O from fuel\n",
"H2O_H2 = mol_H2 * w_H2O;## H2O from H2\n",
"T_H2O = H2O_f + H2O_H2;## in kg/kg\n",
"print('Composition of wet gas ')\n",
"print'%s %.2f %s'%('H2O from fuel ',H2O_f,'')\n",
"print'%s %.2f %s'%('H2O from H2 ',H2O_H2,'')\n",
"print'%s %.2f %s'%('Total H2O in wet gas ',T_H2O,'kg/kg')\n",
"\n",
"##FOR DRY EXCESS AIR\n",
"O2_dry_ex = O2_req * w_O2 *0.3;##in kg/kg\n",
"N2_dry_ex = N2_air * w_N2 *0.3;##in kg/kg \n",
"T_dry_ex = O2_dry_ex + N2_dry_ex;## in kg/kg\n",
"print('Composition of dry excess air ')\n",
"print'%s %.2f %s'%('O2 ',O2_dry_ex,'')\n",
"print'%s %.2f %s'%('N2 ',N2_dry_ex,'')\n",
"print'%s %.2f %s'%('Total dry excess air ',T_dry_ex,'kg/kg')\n",
"\n",
"##(b.2) Enthalpy\n",
"## From steam table or from the appendix C.2; at the given pressure and temperatures, the following specific heat capacity for different gases are obtained\n",
"Cp_CO2_T1 = 1.04*10**3;## Specific heat Capacity of CO2 at temperature Tm_f in J/kg-K\n",
"Cp_CO2_T2 = 0.85*10**3;## Specific heat Capacity of CO2 at temperature Tm_b in J/kg-K\n",
"Cp_SO2_T1 = 0.73*10**3;## Specific heat Capacity of SO2 at temperature Tm_f in J/kg-K\n",
"Cp_SO2_T2 = 0.62*10**3;## Specific heat Capacity of SO2 at temperature Tm_b in J/kg-K\n",
"Cp_N2_T1 = 1.07*10**3;## Specific heat Capacity of N2 at temperature Tm_f in J/kg-K\n",
"Cp_N2_T2 = 1.06*10**3;## Specific heat Capacity of N2 at temperature Tm_b in J/kg-K\n",
"Cp_O2_T1 = 0.99*10**3;## Specific heat Capacity of O2 at temperature Tm_f in J/kg-K\n",
"Cp_O2_T2 = 0.91*10**3;## Specific heat Capacity of O2 at temperature Tm_b in J/kg-K\n",
"\n",
"Cp_dry_T1 = ((CO2_d * Cp_CO2_T1) + (SO2_d * Cp_SO2_T1) + (T_N2 * Cp_N2_T1))/T_dry;## in J/kg-K\n",
"Cp_dry_T2 = ((CO2_d * Cp_CO2_T2) + (SO2_d * Cp_SO2_T2) + (T_N2 * Cp_N2_T2))/T_dry;## in J/kg-K\n",
"Cp_air_T1 = ((O2_dry_ex * Cp_O2_T1) + (N2_dry_ex * Cp_N2_T1))/T_dry_ex;## in J/kg-K\n",
"Cp_air_T2 = ((O2_dry_ex * Cp_O2_T2) + (N2_dry_ex * Cp_N2_T2))/T_dry_ex;## in J/kg-K\n",
"print('(b.2) ')\n",
"print'%s %.2f %s'%('Specific heat Capacity of dry gas at 260 deg C is ',Cp_dry_T1,' J/kg-K ')\n",
"print'%s %.2f %s'%('Specific heat Capacity of dry gas at 25 deg C is ',Cp_dry_T2,' J/kg-K')\n",
"print'%s %.2f %s'%('Specific heat Capacity of dry excess air at 260 deg C is ',Cp_air_T1,' J/kg-K ')\n",
"print'%s %.2f %s'%('Specific heat Capacity of dry excess air at 25 deg C is ',Cp_air_T2,' J/kg-K ')\n",
"\n",
"## From Steam table or Appendix B.3, Enthalpy of superheated steam is obtained at 260 deg C and 1 bar\n",
"E_s = 2995.*10**3;##in J/kg-K\n",
"\n",
"##(c) Heat transferred to water\n",
"E_w = S_Rate / C_Rate;## Evaporation of water per kg of fuel in kg\n",
"E = (E_w*(461. - 293.)*10**3)/10**6;## in 10**6 J\n",
"B = (E_w*(2797. - 461.)*10**3)/10**6;## in 10**6 J\n",
"S = (E_w*(3139. - 2797.)*10**3)/10**6;## in 10**6 J\n",
"print('(c) ')\n",
"print'%s %.2f %s'%('Heat to water in Economiser is ',E,' *10^6 J ')\n",
"print'%s %.2f %s'%('Heat to water in Boiler is ',B,' *10^6 J ')\n",
"print'%s %.2f %s'%('Heat to water in Superheater is ',S,' *10^6 J ')\n",
"\n",
"##(d) Heat loss in flue gas\n",
"hl = 1056*10**3;## Enthalpy of steam at 25 deg C (from steam table) in J/kg-K\n",
"loss_dry = T_dry*((Tm_f*Cp_dry_T1) - (Tm_b*Cp_dry_T2))/10**6;## in 10**6 J\n",
"loss_wet = T_H2O*(E_s - hl)/10**6;## in 10**6 J\n",
"loss_ex_air = T_dry_ex*((Tm_f*Cp_air_T1) - (Tm_b*Cp_air_T2))/10**6;## in 10**6 J\n",
"print('(d) ')\n",
"print'%s %.2f %s'%('Heat loss in dry flue gas is ',loss_dry,' *10^6 J ')\n",
"print'%s %.2f %s'%('Heat loss in wet flue gas is ',loss_wet,' *10^6 J ')\n",
"print'%s %.2f %s'%('Heat loss in dry excess air is ',loss_ex_air,' *10^6 J ')\n",
"\n",
"##(e) Heat loss in combustile matter in ash\n",
"loss_ash = (Ash * C_ash * CV_C)/10**6;## in 10**6 J\n",
"print'%s %.2f %s'%('(e) Heat loss in combustile matter in ash is ',loss_ash,' *10^6 J ')\n",
"\n",
"##(f) Heat loss in grit\n",
"loss_grit = (G * CV_G)/10**6;## in 10**6 J\n",
"print'%s %.2f %s'%('(f) Heat loss in grit is ',loss_grit,' *10^6 J ')\n",
"\n",
"##(g) Radiation and unaccounted heat loss\n",
"h_sup = G_CV;## Heat supplied by the coal in 10**6 J\n",
"loss_rad = (h_sup - (E + B + S + loss_dry + loss_wet + loss_ex_air + loss_ash + loss_grit));## Radiation and unaccounted loss in 10**6 J\n",
"a = (h_sup/h_sup)*100.;\n",
"b = (E/h_sup)*100.;\n",
"c = (B/h_sup)*100.;\n",
"d = (S/h_sup)*100.;\n",
"e = (loss_dry/h_sup)*100.;\n",
"f = (loss_wet/h_sup)*100.;\n",
"g = (loss_ex_air/h_sup)*100.;\n",
"h = (loss_ash/h_sup)*100.;\n",
"i = (loss_grit/h_sup)*100.;\n",
"j = (loss_rad/h_sup)*100.;\n",
"T = b + c + d + e + f + g + h + i + j;\n",
"print('(g) THERMAL BALANCE SHEET :\\t percentage \\t\\t\\t 10**6 J ') \n",
"print'%s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t percentage',a,'\\t' 'Heat supplied by coal ',h_sup,'')\n",
"print'%s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t percentage',b,'\\t' 'Heat absorbed to loss in economiser ',E,'' )\n",
"print'%s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t percentage',c,'\\t' 'boiler',B,'') \n",
"print'%s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t percentage',d,'\\t' 'superheater',S,'') \n",
"print'%s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t percentage',e,'\\t' 'heat loss in :dry flue gas',loss_dry,'')\n",
"print'%s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t percentage',f,'\\t' 'wet flue gas ',loss_wet,'')\n",
"print'%s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t percentage',g,'\\t' 'dry eecess air ',loss_ex_air,'' )\n",
"print'%s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t percentage',h,'\\t' 'heat loss in ash',loss_ash,'') \n",
"print'%s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t percentage',i,'\\t' 'heat loss in grit',loss_grit,'') \n",
"print'%s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\t\\t\\t percentage',j,'\\t' 'radiation and unaccounted heat losses',loss_rad,'')\n",
"print'%s %.2f %s %.2f %s '%('\\t\\t\\t\\t\\tTOTAL percentage ',T,'\\t' 'TOTAL heat supplied',h_sup,'')\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.12\n",
"Page No. 168\n",
"(a.1) \n",
"Total number of kmol of O2 required per kg of fuel is 0.06 kmol \n",
"N2 associated with O2 is 0.21 kmol \n",
"(a.2) \n",
"Theoretical CO2 content of dry flue gas in percentage is 20.64 \n",
"(a.3) \n",
"Excess air based on CO2 content in percentage is 30.00 \n",
"(b.1) \n",
"Composition of dry gas \n",
"CO2 2.42 \n",
"SO2 0.03 \n",
"N2 from fuel 0.01 \n",
"N2 from air 5.89 \n",
"Total dry air 8.36 kg/kg\n",
"Composition of wet gas \n",
"H2O from fuel 0.10 \n",
"H2O from H2 0.38 \n",
"Total H2O in wet gas 0.48 kg/kg\n",
"Composition of dry excess air \n",
"O2 0.61 \n",
"N2 1.77 \n",
"Total dry excess air 2.38 kg/kg\n",
"(b.2) \n",
"Specific heat Capacity of dry gas at 260 deg C is 1060.09 J/kg-K \n",
"Specific heat Capacity of dry gas at 25 deg C is 997.61 J/kg-K\n",
"Specific heat Capacity of dry excess air at 260 deg C is 1049.47 J/kg-K \n",
"Specific heat Capacity of dry excess air at 25 deg C is 1021.50 J/kg-K \n",
"(c) \n",
"Heat to water in Economiser is 1.29 *10^6 J \n",
"Heat to water in Boiler is 18.00 *10^6 J \n",
"Heat to water in Superheater is 2.64 *10^6 J \n",
"(d) \n",
"Heat loss in dry flue gas is 2.09 *10^6 J \n",
"Heat loss in wet flue gas is 0.94 *10^6 J \n",
"Heat loss in dry excess air is 0.59 *10^6 J \n",
"(e) Heat loss in combustile matter in ash is 0.08 *10^6 J \n",
"(f) Heat loss in grit is 0.17 *10^6 J \n",
"(g) THERMAL BALANCE SHEET :\t percentage \t\t\t 10**6 J \n",
"\t\t\t\t\t\t\t percentage 100.00 \tHeat supplied by coal 26.90 \n",
"\t\t\t\t\t\t\t percentage 4.81 \tHeat absorbed to loss in economiser 1.29 \n",
"\t\t\t\t\t\t\t percentage 66.91 \tboiler 18.00 \n",
"\t\t\t\t\t\t\t percentage 9.80 \tsuperheater 2.64 \n",
"\t\t\t\t\t\t\t percentage 7.79 \theat loss in :dry flue gas 2.09 \n",
"\t\t\t\t\t\t\t percentage 3.48 \twet flue gas 0.94 \n",
"\t\t\t\t\t\t\t percentage 2.19 \tdry eecess air 0.59 \n",
"\t\t\t\t\t\t\t percentage 0.28 \theat loss in ash 0.08 \n",
"\t\t\t\t\t\t\t percentage 0.63 \theat loss in grit 0.17 \n",
"\t\t\t\t\t\t\t percentage 4.11 \tradiation and unaccounted heat losses 1.11 \n",
"\t\t\t\t\tTOTAL percentage 100.00 \tTOTAL heat supplied 26.90 \n"
]
}
],
"prompt_number": 34
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex13-pg188"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 6.13\n",
"print('Example 6.13\\n\\n');\n",
"print('Page No. 188\\n\\n');\n",
"\n",
"## given\n",
"P = 1.5;## Pressure in bar\n",
"T = 111.;## Temperature in degree celcius\n",
"m = 2.;## mass flow rate of process liquid in kg/s\n",
"Cp = 4.01*10**3;## Mean Specific heat capacity in J/kg_K\n",
"Tl_i = 20.;## Inlet temperature of liquid in degree celcius\n",
"Tl_o = 90.;## Outlet temperature of liquid in degree celcius\n",
"Ps = 15.;## Pressure of steam in bar\n",
"X = 0.97;## Dryness fraction of steam\n",
"Pa = 1.5;##Pressure after adiabatic expansion in bar\n",
"Ta = 80.;## Temperature of injecting condensate in degree celcius\n",
"\n",
"##(a)\n",
"Q = m*Cp*(Tl_o - Tl_i);## in W\n",
"L = 2227.*10**3;## Latent heat of 1.5 bar steam in J/kg\n",
"m_a = Q/L;\n",
"print'%s %.2f %s'%('(a) Mass flow rate of 1.5 bar steam is ',m_a,' kg/s \\n')\n",
"\n",
"##(b)\n",
"##from steam table, Specific enthalpy of 0.97 dry 15 bar absolute steam\n",
"h = ((843.+(X*1946.))*10**3);## in J/kg\n",
"##the balance for the desuperheater,when y is the mass flow rate(kg/s) of condensate at 80 deg C is,on the basis of 1kg/s of superheated steam: => (1*2731*10^3)+(335*10^3*y)=(1+y)*2693*10^3\n",
"y = (((2731.-2693.)*10**3)/((2693.-335.)*10**3))## in kg/s\n",
"m_b = m_a/(1.+y);## in kg/s\n",
"print'%s %.2f %s'%('(b) Mass flow rate of 15 bar steam is ',m_b,' kg/s \\n')\n",
"\n",
"##(c)\n",
"m_c = y*m_b;##in kg/s\n",
"print'%s %.2f %s'%('(c) Mass flow rate of condensateis ',m_c,' kg/s\\n')\n",
"\n",
"##(d)\n",
"v = 30.;## steam velocity in m/s\n",
"##from steam table\n",
"V = 1.16;## Specific volum of 1.5 bar saturated steam in m^3/kg\n",
"V_d = V*m_a;## in m^3/s\n",
"d = ((V_d*4.)/(v*math.pi))**0.5;## im m\n",
"print'%s %.2f %s'%('(d) The vapour main diameter is ',d,' m \\n')\n",
"\n",
"##(e)\n",
"l = 2.5;## Length of tubes in m\n",
"d_i = 10*10**-3;## Internal Diameter of tube in m\n",
"U = 1500.;## Overall heat transfer coefficent in W/m^2-K\n",
"\n",
"a = math.pi*d_i*l;## in m^2\n",
"T1 = T - Tl_i;## in degree celcius\n",
"T2 = T - Tl_o;## in degree celcius\n",
"Tm = ((T2-T1)/math.log(T2/T1));## logarithmic mean temperature of pipe in degree celcius\n",
"A = Q/(U*Tm);## in m^2\n",
"N = A/a;\n",
"print'%s %.2f %s'%('(e) The number of tubes required is ',N,'\\n')\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 6.13\n",
"\n",
"\n",
"Page No. 188\n",
"\n",
"\n",
"(a) Mass flow rate of 1.5 bar steam is 0.25 kg/s \n",
"\n",
"(b) Mass flow rate of 15 bar steam is 0.25 kg/s \n",
"\n",
"(c) Mass flow rate of condensateis 0.00 kg/s\n",
"\n",
"(d) The vapour main diameter is 0.11 m \n",
"\n",
"(e) The number of tubes required is 99.82 \n",
"\n"
]
}
],
"prompt_number": 35
}
],
"metadata": {}
}
]
}
|