1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
|
{
"metadata": {
"name": "",
"signature": "sha256:b8e850534ebe1c09700aafa043440ac4a2221bb7e166ce915a3d59a2e23cca27"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter4-Heat transfer theory\n"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg88"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 4.1\n",
"print('Example 4.1\\n\\n');\n",
"print('Page No. 88\\n\\n');\n",
"\n",
"## given\n",
"K = 45.## Thermal Conductivity in W/m-K\n",
"L = 5.*10**-3;## thickness in metre\n",
"T1 = 100.;## in degree celcius\n",
"T2 = 99.9;## in degree celcius\n",
"A = 1.;## Area in m^2\n",
"\n",
"##By Fourier law of conduction\n",
"Q = ((K*A*(T1-T2))/L);## in Watts\n",
"print'%s %.2f %s'%('The rate of conductive heat transfer is ',Q,' W \\n')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 4.1\n",
"\n",
"\n",
"Page No. 88\n",
"\n",
"\n",
"The rate of conductive heat transfer is 900.00 W \n",
"\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg89"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 4.2\n",
"print('Example 4.2\\n\\n');\n",
"print('Page No. 89\\n\\n');\n",
"## given\n",
"K1 = 45.## Thermal Conductivity of mild steel in W/m-K\n",
"K2 = 0.040## Thermal Conductivity of insulaton in W/m-K\n",
"L1 = 5.*10**-3;## thickness of mild steel in metre\n",
"L2 = 50.*10**-3;## thickness of insulation in metre\n",
"T1 = 100.;## in degree celcius\n",
"T2 = 25.;## in degree celcius\n",
"A = 1.;## Area in m^2\n",
"\n",
"##By Fourier law of conduction\n",
"Q = (((T1-T2)/((L1/(K1*A))+(L2/(K2*A)))))## in Watts\n",
"print'%s %.2f %s'%('The rate of conductive heat transfer is ',Q,' W \\n')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 4.2\n",
"\n",
"\n",
"Page No. 89\n",
"\n",
"\n",
"The rate of conductive heat transfer is 59.99 W \n",
"\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg90"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 4.3\n",
"print('Example 4.3\\n\\n');\n",
"print('Page No. 90\\n\\n');\n",
"\n",
"## given\n",
"K1 = 26.;## Thermal Conductivity of stainless steel in W/m-K\n",
"K2 = 0.038;## Thermal Conductivity of insulaton in W/m-K\n",
"L1 = 3.*10**-3;## thickness of stainless steel in metre\n",
"L2 = 40.*10**-3;## thickness of insulation in metre\n",
"T1 = 105.;## in degree celcius\n",
"T2 = 25.;## in degree celcius\n",
"L = 15.;## Length of pipe in metre\n",
"d1 = 50.*10**-3;## Internal diameter of pipe in metre\n",
"d2 = 56.*10**-3;## External diameter of pipe in metre\n",
"\n",
"r1 = d1/2.;## in metre\n",
"r2 = d2/2.;## in metre\n",
"\n",
"rm_p = ((r2-r1)/math.log(r2/r1));## logarithmic mean radius of pipe in m\n",
"rm_i = (((r2+L2)-r2)/math.log((r2+L2)/r2));## logarithmic mean radius of insulation in m\n",
"\n",
"##By Fourier law of conduction\n",
"Q = (((T1-T2)/((L1/(K1*2.*math.pi*rm_p))+(L2/(K2*2.*math.pi*rm_i)))));## in W/m\n",
"Q_L = Q*L;\n",
"print'%s %.2f %s'%('The rate of conductive heat transfer per 15 m length of pie is ',Q_L,'W')## Deviation in answer due to direct substitution\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 4.3\n",
"\n",
"\n",
"Page No. 90\n",
"\n",
"\n",
"The rate of conductive heat transfer per 15 m length of pie is 322.84 W\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg93"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 4.4\n",
"print('Example 4.4\\n\\n');\n",
"print('Page No. 93\\n\\n');\n",
"\n",
"## given\n",
"dH = 12.*10**-3;## Outer diameter of pipe in m\n",
"dC = 10.*10**-3;## Inner diameter of pipe in m\n",
"L = 1.*10**-3;## im m\n",
"h_H = 10.*10**3;## Heat Transfer Coefficient on vapour side in W/m^2-K\n",
"h_C = 4.5*10**3;## Heat Transfer Coefficient on vapour side in W/m^2-K\n",
"K = 26.;## Thermal Conductivity of metal in W/m-K\n",
"dM = (dH + dC)/2.;## mean diameter in m\n",
"h_Hf = 6.*10**3;## Fouling factor for hot side\n",
"h_Cf = 6.*10**3;## Fouling factor for cold side\n",
"\n",
"U = (1./h_H)+((L*dH)/(K*dM))+(dH/(dC*h_C));\n",
"Uh = (1./U);## in W/m^2-K\n",
"print'%s %.2f %s'%('The original heat transfer coefficient is ',Uh,' W/sq.m K \\n' )## Deviation in answer due to direct substitution\n",
"\n",
"u = (1./h_H)+(1./h_Hf)+((L*dH)/(K*dM))+(dH/(dC*h_C))+(dH/(dC*h_Cf));\n",
"Uf = (1./u);## in W/m^2-K\n",
"print'%s %.2f %s'%('The final heat transfer coefficient due to fouling is ',math.ceil(Uf),' W/m^2-K \\n')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 4.4\n",
"\n",
"\n",
"Page No. 93\n",
"\n",
"\n",
"The original heat transfer coefficient is 2447.23 W/sq.m K \n",
"\n",
"The final heat transfer coefficient due to fouling is 1290.00 W/m^2-K \n",
"\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg95"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 4.5\n",
"print('Example 4.5\\n\\n');\n",
"print('Page No. 95\\n\\n');\n",
"\n",
"## given\n",
"m_h = 1.05;## Mass flow rate of hot liquid in kg/s\n",
"Thi = 130.;## Inlet Temperature of hot liquid in degree celcius\n",
"Tho = 30.;## Outlet Temperature of hot fluid in degree celcius\n",
"Cph = 2.45*10**3;## Specific heat capacity of hot liquid in J/kg-K\n",
"\n",
"m_c = 4.10;## Mass flow rate of cold liquid in kg/s\n",
"Tci = 20.;## Inlet Temperature of cold liquid in degree celcius\n",
"Cpc = 4.18*10**3;## Specific heat capacity of cold liquid in J/kg-K\n",
"\n",
"A = 6.8;## Area of heat exchanger in m^2\n",
"Q = m_h*Cph*(Thi-Tho);## in Watts\n",
"\n",
"##From heat balance\n",
"## m_c*Cpc*(Tci-Tco)= m_h*Cph*(Thi-Tho)= UAlTm = Q\n",
"Tco = ((Q/(m_c*Cpc))+Tci);\n",
"print'%s %.2f %s'%(' The Outlet Temperature of cold fluid is ',Tco,' degree celcius\\n')\n",
"## As counter flow heat exchanger \n",
"T1 = Thi-Tco;\n",
"T2 = Tho-Tci;\n",
"Tm = ((T1-T2)/math.log(T1/T2));\n",
"\n",
"U = (Q/(A*Tm));\n",
"print'%s %.2f %s'%('The overall heat transfer coefficient is ',U,' W/sq.m K \\n')## Deviation in answer due to direct substitution\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 4.5\n",
"\n",
"\n",
"Page No. 95\n",
"\n",
"\n",
" The Outlet Temperature of cold fluid is 35.01 degree celcius\n",
"\n",
"The overall heat transfer coefficient is 1002.06 W/sq.m K \n",
"\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg98"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 4.6\n",
"print('Example 4.6\\n\\n');\n",
"print('Page No. 98\\n\\n');\n",
"\n",
"## given\n",
"v = 1.23;## velocity in m/s\n",
"d = 25.*10**-3;## diameter in m\n",
"p = 980.;## density in kg/m^3\n",
"u = 0.502*10**-3;## viscosity in Ns/m^2\n",
"Cp = 3.76*10**3;## Specific heat capacity in J/kg-K\n",
"K = 0.532;## Thermal conductivity in W/m-K\n",
"\n",
"Re = (d*v*p)/u;##Reynolds Number\n",
"Pr = (Cp*u)/K;## Prandtl Number\n",
"Re_d = (Re)**0.8;\n",
"Pr_d = (Pr)**0.4;\n",
"\n",
"## By Dittus-Boelter Equation\n",
"##Nu = 0.0232 * Re^0.8 Pr^0.4 = (hd)/K\n",
"Nu = 0.0232 * Re_d * Pr_d;## Nusselt Number\n",
"h = (Nu*K)/d;##W/m^2-K\n",
"print'%s %.2f %s'%('The film heat transfer coefficient is ',h,' W/sq.m K\\n')## Deviation in answer due to direct substitution\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 4.6\n",
"\n",
"\n",
"Page No. 98\n",
"\n",
"\n",
"The film heat transfer coefficient is 5446.85 W/sq.m K\n",
"\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg99"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 4.7\n",
"print('Example 4.7\\n\\n');\n",
"print('Page No. 99\\n\\n');\n",
"\n",
"## (a) without insulation\n",
"## given\n",
"d_a = 0.150;## Diameter of pipe in m\n",
"T1_a = 60.;## Surface temperature in degree celcius\n",
"T2_a = 10.;## Ambient temperature in degree celcius\n",
"\n",
"##For laminar flow in pipe,h= 1.41*((T1-T2)/d)^0.25\n",
"h_a = 1.41*((T1_a-T2_a)/d_a)**0.25;##W/m^2-K\n",
"A_a = math.pi * d_a;## Surface Area per unit length in m^2/m\n",
"Q_a = h_a*A_a*(T1_a - T2_a);## in W/m\n",
"print'%s %.2f %s'%('The heat loss per unit length without insulation is ',math.ceil(Q_a),' W/m \\n')\n",
"\n",
"## (b) with insulation\n",
"## given\n",
"d_b = 0.200;## Diameter of pipe in m\n",
"T1_b = 20.;## Surface temperature in degree celcius\n",
"T2_b = 10.;## Ambient temperature in degree celcius\n",
"\n",
"##For laminar flow in pipe,h= 1.41*((T1-T2)/d)^0.25\n",
"h_b = 1.41*((T1_b-T2_b)/d_b)**0.25;##W/m^2-K\n",
"A_b = math.pi * d_b;## Surface Area per unit length in m^2/m\n",
"Q_b = h_b*A_b*(T1_b - T2_b);## in W/m\n",
"print'%s %.2f %s'%('the heat loss per unit length with insulation is ',Q_b,' W/m')\n",
"## Deviation in answer due to direct substitution\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 4.7\n",
"\n",
"\n",
"Page No. 99\n",
"\n",
"\n",
"The heat loss per unit length without insulation is 142.00 W/m \n",
"\n",
"the heat loss per unit length with insulation is 23.56 W/m\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg103"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 4.8\n",
"print('Example 4.8\\n\\n');\n",
"print('Page No. 103\\n\\n');\n",
"\n",
"## given\n",
"d = 0.100;## Diameter of pipe in m\n",
"T1 = 383.;## Surface temperature in Kelvin\n",
"T2 = 288.;## Surrounding air temperature in Kelvin\n",
"e = 0.9;## Emissivity of pipe\n",
"A = math.pi * d;## Surface Area per unit length in m^2/m\n",
"\n",
"## By Stefan-Blotzmann law, the radiative heat transfer rate is Q = 5.669*e*A*((T1/100)^4-(T2/100)^4)\n",
"Q = 5.669*e*A*((T1/100.)**4-(T2/100.)**4);## in W/m\n",
"print'%s %.2f %s'%('The radiative heat loss per unit length is ',math.ceil(Q),' W/sq.m')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 4.8\n",
"\n",
"\n",
"Page No. 103\n",
"\n",
"\n",
"The radiative heat loss per unit length is 235.00 W/sq.m\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg103"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 4.9\n",
"print('Example 4.9\\n\\n');\n",
"print('Page No. 103\\n\\n');\n",
"\n",
"## given\n",
"A = 1.;## Area in m^2\n",
"T1 = 423.;## Surface temperature in Kelvin\n",
"T2 = 293.;## Surrounding air temperature in Kelvin\n",
"T1_c = 150.;## Surface temperature in degree celcius\n",
"T2_c = 20.;## Ambient temperature in degree celcius\n",
"e = 0.9;## Emissivity of pipe\n",
"\n",
"##(a) Horizontal Pipe\n",
"d = 0.100;## Diameter of pipe in m\n",
"##For laminar flow in pipe,Q= (1.41*((T1-T2)/d)^0.25)*(T1-T2)\n",
"Q_Ca = (1.41*((T1_c-T2_c)/d)**0.25)*(T1_c-T2_c);## Convective heat transfer rate in W/m^2\n",
"## By Stefan-Blotzmann law, the radiative heat transfer rate is Q = 5.669*e*((T1/100)^4-(T2/100)^4)\n",
"Q_Ra = 5.669*e*((T1/100.)**4-(T2/100.)**4);## in W/m^2\n",
"Q_Ta = Q_Ra + Q_Ca;## IN W/m^2\n",
"print'%s %.2f %s'%('The total heat loss from per square meter area is ',Q_Ta,' W/sq.m\\n')## Deviation in answer due to direct substitution\n",
"\n",
"\n",
"##(b) Vertical Pipe\n",
"##For turbulent flow in pipe,Q= (1.24*(T1-T2)^1.33)\n",
"Q_Cb = (1.24*(T1-T2)**1.33);## Convective heat transfer rate in W/m^2\n",
"## By Stefan-Blotzmann law, the radiative heat transfer rate is Q = 5.669*e*((T1/100)^4-(T2/100)^4)\n",
"Q_Rb = 5.669*e*((T1/100.)**4-(T2/100.)**4);## in W/m^2\n",
"Q_Tb = Q_Rb + Q_Cb;## IN W/m^2\n",
"print'%s %.2f %s'%('The total heat loss from per square meter area is ',math.floor(Q_Tb),' W/sq.m\\n')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 4.9\n",
"\n",
"\n",
"Page No. 103\n",
"\n",
"\n",
"The total heat loss from per square meter area is 2358.09 W/sq.m\n",
"\n",
"The total heat loss from per square meter area is 2060.00 W/sq.m\n",
"\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg106"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 4.10\n",
"print('Example 4.10\\n\\n');\n",
"print('Page No. 106\\n\\n');\n",
"\n",
"## given\n",
"T1 = 150.;## Surface temperature in degree celcius\n",
"T2 = 20.;## Ambient temperature in degree celcius\n",
"d = 0.100; ##Outside diametr of pipe in m\n",
"h = 10.;## Outside film coefficient in W/m^2-K\n",
"t = 25.*10**-3;## thickness of insulation in m\n",
"K = 0.040;## Thermal conductivity of insulation in W/m-K\n",
"\n",
"r2 = d/2.;##in m\n",
"r1 = r2+t;## in m\n",
"Q = ((T1-T2)/((1./(2.*math.pi*r1*h))+(math.log(r1/r2)/(2.*math.pi*K))));## in W/m\n",
"print'%s %.2f %s'%('The heat loss per unit length is ',Q,' W/m')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 4.10\n",
"\n",
"\n",
"Page No. 106\n",
"\n",
"\n",
"The heat loss per unit length is 71.21 W/m\n"
]
}
],
"prompt_number": 13
}
],
"metadata": {}
}
]
}
|