summaryrefslogtreecommitdiff
path: root/Energy_Management_by_W._R._Murphy_and_G._A._Mckay/Chapter3.ipynb
blob: 5f437f5272d7196066003913ffadc9a4702ea4cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
{
 "metadata": {
  "name": "",
  "signature": "sha256:e9577d4ad5de7558637cd37bfc3341b40c44e984438cd0af3886acebfa5d3168"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter3-Economics\n"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg58"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "## Example 3.1\n",
      "print('Example 3.1');\n",
      "print('Page No. 58');\n",
      "\n",
      "## given\n",
      "P = 10000;## Principal Amount\n",
      "i = 0.15;## Interest Rate\n",
      "n = 4;##years\n",
      "I = P*i*n;## Simple Interest\n",
      "Ts= P+I;## The total repayment\n",
      "print'%s %.2f %s'%('The total repayment is',Ts,' Euro')\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.1\n",
        "Page No. 58\n",
        "The total repayment is 16000.00  Euro\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg58"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "## Example 3.2\n",
      "print('Example 3.2');\n",
      "print('Page No. 58');\n",
      "\n",
      "## given\n",
      "P = 10000;## Principal Amount in Pound\n",
      "i = 0.15;## Interest Rate\n",
      "n = 4;##years\n",
      "Tc = P*(1+i)**n;\n",
      "print'%s %.2f %s'%('The total repayment after adding compond interest is ',Tc,' Pound')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.2\n",
        "Page No. 58\n",
        "The total repayment after adding compond interest is  17490.06  Pound\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg59"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "## Example 3.3\n",
      "print('Example 3.3');\n",
      "##Page No. 59\n",
      "\n",
      "## given\n",
      "P = 60000;##/ Principal Amount in Pound\n",
      "i = 0.18;## Interest Rate\n",
      "n = 10;##years\n",
      "R = P*((i*(1+i)**n)/((1+i)**n -1));##Rate of Capital Recovery\n",
      "print'%s %.2f %s'%('The annual investment required is',R,'Pound')\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.3\n",
        "The annual investment required is 13350.88 Pound\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg61"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.4\n",
      "print('Example 3.4\\n\\n');\n",
      "print('Page No. 61\\n\\n');\n",
      "import numpy\n",
      "## given\n",
      "P = 100000.;##/ Principal Amount of boiler plant in Pound\n",
      "n = 10.;## service life in years\n",
      "S = 0.;##Zero Salvage value\n",
      "nT = (n*(n+1.)/2.);##sum of years\n",
      "z0=numpy.linspace(0,9)\n",
      "leng=len(z0)\n",
      "d_=numpy.zeros(leng)\n",
      "for i in range (0,9):\n",
      "    d_[i+1] = ((P-S)/nT)*(n-i);\n",
      "\n",
      "print'%s %.2f %s'%('The Annual depreciation for first year is ',d_[1],' Pound\\n')\n",
      "print'%s %.2f %s'%('The Annual depreciation for second year is ',d_[2],' Pound\\n\\n')\n",
      "print'%s %.2f %s'%('The Annual depreciation for third year is ',d_[3],' Pound\\n')\n",
      "print'%s %.2f %s'%('The Annual depreciation for ten year is ',d_[9]/2,' Pound\\n')\n",
      "## Deviation in answer due to some .approximation of values in the book\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.4\n",
        "\n",
        "\n",
        "Page No. 61\n",
        "\n",
        "\n",
        "The Annual depreciation for first year is  18181.82  Pound\n",
        "\n",
        "The Annual depreciation for second year is  16363.64  Pound\n",
        "\n",
        "\n",
        "The Annual depreciation for third year is  14545.45  Pound\n",
        "\n",
        "The Annual depreciation for ten year is  1818.18  Pound\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex5-pg62"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.5\n",
      "print('Example 3.5\\n\\n');\n",
      "print('Page No. 62\\n\\n');\n",
      "\n",
      "## given\n",
      "P = 40000.;##/ Principal Amount of boiler plant in Pound\n",
      "nT = 10.;## service life in years\n",
      "S = 4000.;## Salvage value\n",
      "n = 6.;## years after which Asset value has to be calculated\n",
      "\n",
      "##(a) Straight line method\n",
      "d = ((P-S)/nT);## Depreciation\n",
      "Aa = (d*(nT-n)) + S;\n",
      "print'%s %.2f %s'%('The Asset value at the end of six years using Straight line method is ',Aa,' Pound\\n')\n",
      "\n",
      "## (b) Declining balance technique\n",
      "f = 1.-(S/P)**(1./nT);## Fixed fraction of the residual asset\n",
      "Ab = P*(1.-f)**n;\n",
      "print'%s %.2f %s'%('The Asset value at the end of six years using Declining balance technique is ',Ab,' Pound\\n\\n')\n",
      "\n",
      "## (c) Sum of the years digit\n",
      "sum_nT = (nT*(nT+1.)/2.);##sum of  10 years\n",
      "sum_n = 45.;##sum after 6 years\n",
      "dc = ((sum_n/sum_nT)*(P-S));## Depreciation after 6 years\n",
      "Ac = P-dc;\n",
      "print'%s %.2f %s'%('The Asset value at the end of six years using Sum of the years digit is ',Ac,' Pound\\n')## Deviation in answer due to direct substitution\n",
      "\n",
      "##(d) Sinking Fund Method\n",
      "r_i = 0.06;## Rate of interest\n",
      "Ad = P-((P-S)*(((1.+r_i)**n-1.)/((1.+r_i)**nT-1.)));\n",
      "print'%s %.2f %s'%('The Asset value at the end of six years using Sinking Fund Method is ',Ad,' Pound\\n')## Deviation in answer due to direct substitution\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.5\n",
        "\n",
        "\n",
        "Page No. 62\n",
        "\n",
        "\n",
        "The Asset value at the end of six years using Straight line method is  18400.00  Pound\n",
        "\n",
        "The Asset value at the end of six years using Declining balance technique is  10047.55  Pound\n",
        "\n",
        "\n",
        "The Asset value at the end of six years using Sum of the years digit is  10545.45  Pound\n",
        "\n",
        "The Asset value at the end of six years using Sinking Fund Method is  20948.69  Pound\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex6-pg67"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.6\n",
      "print('Example 3.6\\n\\n');\n",
      "print('Page No. 67\\n\\n');\n",
      "import numpy\n",
      "## given\n",
      "P = 9000.;## Capital Cost in Pound\n",
      "n = 5.;## Project lifetime\n",
      "Less_dep = 8000.;## Less Depreciation\n",
      "\n",
      "##For Project A\n",
      "d1 = numpy.array([[4500 ,3750 ,3000 ,1500 ,750 ]])## Saving in every year (before depreciation)\n",
      "dT1 = sum(d1)\n",
      "Net_S1 = dT1- Less_dep;## Total Net Saving\n",
      "Avg1 = Net_S1/n;## Average net annual saving\n",
      "R_R1 = (Avg1/P)*100.;\n",
      "\n",
      "##For Project \n",
      "d2 =numpy.array([[750 ,2250 ,4500 ,4500 ,1500 ]])## Saving in every year (before depreciation)\n",
      "dT2 = sum(d2)\n",
      "Net_S2 = dT2- Less_dep;## Total Net Saving\n",
      "Avg2 = Net_S2/n;## Average net annual saving\n",
      "R_R2 = (Avg2/P)*100.;\n",
      "print(R_R1)\n",
      "print(R_R2)\n",
      "#print'%s %.2f %s'%('The percentage of Rate of Return on original investment for Project A is ',R_R1,'')\n",
      "#print'%s %.2f %s'%('The percentage of Rate of Return on original investment for Project B is ',R_R2,'')\n",
      "\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.6\n",
        "\n",
        "\n",
        "Page No. 67\n",
        "\n",
        "\n",
        "[ -7.77777778  -9.44444444 -11.11111111 -14.44444444 -16.11111111]"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "[-16.11111111 -12.77777778  -7.77777778  -7.77777778 -14.44444444]\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex7-pg68"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.7\n",
      "print('Example 3.7\\n\\n');\n",
      "print('Page No. 68\\n\\n');\n",
      "import numpy\n",
      "## given\n",
      "Pc = 10000.;## Capital cost for project C in Pound\n",
      "Pd = 10000.;## Capital cost for project d in Pound\n",
      "nc = 3.;## pay back period for C\n",
      "nd = 3.;## pay back period for D\n",
      "Ca = numpy.array([[4500, 3500, 2000, 2000 ,1000]]);## Annual Cash flow for C in Pound\n",
      "Cc = numpy.array([[4500 ,8000, 10000, 12000 ,13000]])## Cumulative Cash flow for C in Pound\n",
      "Da = numpy.array([[1500, 4000, 4500, 2200 ,1800 ,1000]]);## Annual Cash flow for D in Pound\n",
      "Dc = numpy.array([[1500, 5500, 10000, 12200 ,14000, 15000]])## Cumulative Cash flow for D in Pound\n",
      "Ac = 13000-Pc;## in Pound\n",
      "Ad = 15000-Pd;## in Pound\n",
      "print'%s %.2f %s'%('Additional amount from C after the pay back time is ',Ac,' Pound\\n')\n",
      "print'%s %.2f %s'%('Additional amount from D after the pay back time is ',Ad,' Pound\\n')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.7\n",
        "\n",
        "\n",
        "Page No. 68\n",
        "\n",
        "\n",
        "Additional amount from C after the pay back time is  3000.00  Pound\n",
        "\n",
        "Additional amount from D after the pay back time is  5000.00  Pound\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex8-pg69"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.8\n",
      "print('Example 3.8\\n\\n');\n",
      "print('Page No. 69\\n\\n');\n",
      "import numpy\n",
      "##Refer figure 3.6\n",
      "## given\n",
      "n = 5.;##years\n",
      "C = 80000.;## COst of the project in Pound\n",
      "S = 0.;## Zero Salvage Value\n",
      "A_E = ([[10000 ,20000 ,30000 ,40000 ,50000]])## Annual Net cash flow for project E in Pound\n",
      "C_E = ([[10000 ,30000 ,60000, 100000, 150000]])## Cummulative Net cash flow for project E in Pound\n",
      "A_F = ([[50000 ,40000, 30000, 20000 ,10000]])## Annual Net cash flow for project F in Pound\n",
      "C_F = ([[50000 ,90000 ,120000, 140000 ,150000]])## Cummulative Net cash flow for project F in Pound\n",
      "\n",
      "##From the figure 3.6 (intercept of x-axis)\n",
      "P_F = 1.75;## in years\n",
      "P_E = 3.5;## in years\n",
      "print'%s %.2f %s'%('The pay-back time of project F is ',P_F,'')\n",
      "print'%s %.2f %s'%('The pay-back time of project E is ',P_E,'')\n",
      "\n",
      "print('As the pay-back time is less for project F,\\nProject F would always be choosen in practice\\nsince prediction of savings in the early years are more reliable than long-term predictions.')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.8\n",
        "\n",
        "\n",
        "Page No. 69\n",
        "\n",
        "\n",
        "The pay-back time of project F is  1.75 \n",
        "The pay-back time of project E is  3.50 \n",
        "As the pay-back time is less for project F,\n",
        "Project F would always be choosen in practice\n",
        "since prediction of savings in the early years are more reliable than long-term predictions.\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex9-pg70"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.9\n",
      "print('Example 3.9\\n\\n');\n",
      "print('Page No. 70\\n\\n');\n",
      "\n",
      "## given\n",
      "P = 1.;##/ Principal Amount in Pound\n",
      "\n",
      "r_i = 0.1;## Compound interest rate\n",
      "for i in range(1,4):\n",
      "    c = P*(1.+r_i)**i;\n",
      "\n",
      "print'%s %.2f %s %.2f %s '%('compound intrest after year ',i,'' is 'equal to ',c,' Pound\\n')\n",
      "\n",
      "new_P = 1000.*P;##in Pound\n",
      "new_c = 1000.*c;## in Pound\n",
      "print'%s %.2f %s'%('The new amount at the compound interest after fourth year is ',new_c,' Pound\\n\\n')\n",
      "\n",
      "## Discount rate\n",
      "r_d = 0.10;## Discount rate\n",
      "for j in range (1,4):\n",
      "    d = P*(1./(1.+r_d)**j);\n",
      "    print'%s %.2f %s %.2f %s '%('The amount receivable at discount in year ',j,'' is '',d,' Pound\\n')\n",
      "\n",
      "\n",
      "new_P1 = new_c;## in Pound\n",
      "new_d = new_P1*d;## in Pound\n",
      "print'%s %.2f %s'%('The  new amount receivable at discount in fourth year is ',new_d,' Pound\\n')\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.9\n",
        "\n",
        "\n",
        "Page No. 70\n",
        "\n",
        "\n",
        "compound intrest after year  3.00 False 1.33  Pound\n",
        " \n",
        "The new amount at the compound interest after fourth year is  1331.00  Pound\n",
        "\n",
        "\n",
        "The amount receivable at discount in year  1.00 True 0.91  Pound\n",
        " \n",
        "The amount receivable at discount in year  2.00 True 0.83  Pound\n",
        " \n",
        "The amount receivable at discount in year  3.00 True 0.75  Pound\n",
        " \n",
        "The  new amount receivable at discount in fourth year is  1000.00  Pound\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex10-pg71"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.10\n",
      "print('Example 3.10\\n\\n');\n",
      "print('Page No. 71\\n\\n');\n",
      "import numpy\n",
      "## given\n",
      "C = 2500.;## Cost of the project\n",
      "P = 1000.;## Cash in flow\n",
      "r_r = 0.12;## Rate of return \n",
      "S = 0.;## Zero salvage value\n",
      "n = 4.;##years\n",
      "z0=numpy.linspace(1,4)\n",
      "leng=len(z0)\n",
      "d_=numpy.zeros(leng)\n",
      "for j in range (1,4):\n",
      "\td_[j] = P*(1./(1.+r_r)**j);\n",
      "\n",
      "\n",
      "\n",
      "P_v = d_[0]+d_[1]+d_[2]+d_[3];##Present value of cash inflow\n",
      "N = P_v-C;\n",
      "print'%s %.2f %s'%('Net present value is',math.ceil(N),'Pound\\n')\n",
      "\n",
      "if(P_v>C):\n",
      "\tprint('The project may be undertaken')\n",
      "else:\n",
      "\tprint('The project may not be undertaken')\n",
      "    \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.10\n",
        "\n",
        "\n",
        "Page No. 71\n",
        "\n",
        "\n",
        "Net present value is -98.00 Pound\n",
        "\n",
        "The project may not be undertaken\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex11-pg72"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.11\n",
      "print('Example 3.11\\n\\n');\n",
      "print('Page No. 72\\n\\n');\n",
      "import numpy\n",
      "## given\n",
      "Cash_out = 80000.;## Present value of cash outflow for both projects E and F\n",
      "r_r = .2;## Rate of return\n",
      "n = 5.;## years\n",
      "\n",
      "d = numpy.array([0.833, 0.694 ,0.579, 0.482 ,0.402])## Discount Factor for 20% of rate of return for 5 years\n",
      "Ce = numpy.array([10000 ,20000, 30000 ,40000 ,50000])## Cash flow for project E in Pound\n",
      "Pe = numpy.array([8330, 13880, 17370 ,19280 ,20100])## Present value for project E in Pound\n",
      "\n",
      "Cf = numpy.array([50000 ,40000, 30000, 20000, 10000])## Cash flow for project F in Pound\n",
      "Pf = numpy.array([41650 ,27760, 17370, 9640, 4020])## Present value for project F in Pound\n",
      "\n",
      "Cash_inE = sum(Pe)##Present value of cash inflow in Pound\n",
      "Cash_inF = sum(Pf)##Present value of cash inflow in Pound\n",
      "\n",
      "Net_E = Cash_inE - Cash_out;## net present value for project E in Pound\n",
      "Net_F = Cash_inF - Cash_out;## net present value for project F in Pound\n",
      "\n",
      "if (Net_E>Net_F):\n",
      "\tprint('Project E is selected based on NPV')\n",
      "else:\n",
      "    print('Project F is selected based on NPV')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.11\n",
        "\n",
        "\n",
        "Page No. 72\n",
        "\n",
        "\n",
        "Project F is selected based on NPV\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex12-pg72"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.12\n",
      "print('Example 3.12\\n\\n');\n",
      "print('Page No. 72\\n\\n');\n",
      "\n",
      "## given\n",
      "Cash_inG = 43000.;## Present value of cash inflow for project G in Pound\n",
      "Cash_outG = 40000.;## Present value of cash outflow for  project G in Pound\n",
      "Net_G = Cash_inG - Cash_outG;## Net present value for G in Pound\n",
      "PI_G = (Cash_inG/Cash_outG);## Profitability index for G\n",
      "\n",
      "Cash_inH = 23000.;## Present value of cash inflow for project H in Pound\n",
      "Cash_outH = 20000.;## Present value of cash outflow for  project H in Pound\n",
      "Net_H = Cash_inH - Cash_outH;## Net present value for H in Pound\n",
      "PI_H = (Cash_inH/Cash_outH);## Profitability index for H\n",
      "\n",
      "##The higher the profitability index the more desirable is the project.\n",
      "if (PI_G>PI_H):\n",
      "\tprint('Project G is more attractive than Project H')\n",
      "else:\n",
      "    print('Project H is more attractive than Project G')\n",
      "\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.12\n",
        "\n",
        "\n",
        "Page No. 72\n",
        "\n",
        "\n",
        "Project H is more attractive than Project G\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex13-pg73"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.13\n",
      "print('Example 3.13\\n\\n');\n",
      "print('Page No. 73\\n\\n');\n",
      "import numpy\n",
      "## given\n",
      "Cash_out = 80000.;## Present value of cash outflow for project F in Pound\n",
      "n = 5.;## years\n",
      "Cash_in= numpy.array([50000, 40000 ,30000, 20000 ,10000])## Cashn in \\flow for project F in Pound\n",
      "NPV = 0.;##At the end of 5 years\n",
      "\n",
      "##Let the unknown rate for project F be rm.\n",
      "\n",
      "##The amount standing at the end of 5 years is\\n => 0 = 80000*(1+rm)^5 - 50000*(1+rm)^4 - 40000*(1+rm)^3 - 30000*(1+rm)^2 - 20000*(1+rm)^1 - 10000\n",
      "## By taking (1+rm) = x\\n =>8*x^5 - 5*x^4 - 4*x^3 - 3*x^2 - 2*x - 1 = 0\\n\\n')\n",
      "\n",
      "from sympy import Eq, Symbol, solve\n",
      "\n",
      "x = Symbol('x')\n",
      "eqn= Eq(((x**5*8.0) - 5*x**4 - 4*x**3 - 3*x**2 - 2*x ), -1.0);\n",
      "\n",
      "xres=1.3449924  \n",
      "rm=(xres-1)*100\n",
      "rm = (xres - 1)*100;\n",
      "print'%s %.2f %s'%('The value of rm for project F is ',math.ceil(rm),' per cent\\n')\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.13\n",
        "\n",
        "\n",
        "Page No. 73\n",
        "\n",
        "\n",
        "The value of rm for project F is  35.00  per cent\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex14-pg74"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.14\n",
      "print('Example 3.14\\n\\n');\n",
      "print('Page No. 74\\n\\n');\n",
      "import numpy\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "from sklearn import linear_model\n",
      "\n",
      "## given\n",
      "n = 5.;##years\n",
      "C = 80000.;## Cost of the project in Pound\n",
      "Cash_in = numpy.array([10000, 20000 ,30000 ,40000 ,50000])## Cash inflow in Pound\n",
      "r_d1 = 15.;## Discount factor of 15%\n",
      "r_d2 = 18. ;## Discount factor of 18%\n",
      "r_d3 = 20.;## Discount factor of 20%\n",
      "\n",
      "##At discount of 15%\n",
      "df_1 = numpy.array([0.870, 0.756, 0.658 ,0.572 ,0.497])## Discount factor for every year\n",
      "PV_1 = numpy.array([8700 ,15120, 19740 ,22880 ,24850])## Present value\n",
      "Net_1 = sum (PV_1);## net present value\n",
      "\n",
      "\n",
      "##At discount of 18%\n",
      "df_2 = numpy.array([0.847, 0.718, 0.609 ,0.516 ,0.437])## Discount factor for every year\n",
      "PV_2 = numpy.array([8470, 14360, 18270 ,20640, 21850])## Present value\n",
      "Net_2 = sum (PV_2);## net present value\n",
      "\n",
      "\n",
      "##At discount of 20%\n",
      "df_3 = numpy.array([0.833 ,0.694 ,0.579 ,0.482, 0.402])## Discount factor for every year\n",
      "PV_3 = numpy.array([8330 ,13880 ,17370, 19280, 20100])## Present value\n",
      "Net_3 = sum (PV_3);## net present value\n",
      "\n",
      "## f = N.P.V. cash inflow - N.P.V. cash outflow\n",
      "##(1) By Numerical Method\n",
      "ff = 2.*((sum (PV_2) - C)/(sum (PV_2) - sum(PV_3)));## in percentage\n",
      "f = 18. + ff;\n",
      "print'%s %.2f %s'%('the internal rate of return in percentage is ',f,' \\n\\n')## Deviation in answer due to direct substitution\n",
      "\n",
      "##(2) By Graphical Interpolation\n",
      "f_1 = (sum (PV_1) - C)/10**3;##At discount factor of 15%\n",
      "f_2 = (sum (PV_2) - C)/10**3;##At discount factor of 18%\n",
      "f_3 = (sum (PV_3) - C)/10**3;##At discount factor of 20%\n",
      "%matplotlib inline\n",
      "x = numpy.array([f_1 ,f_2 ,f_3]);\n",
      "y = numpy.array([r_d1, r_d2, r_d3]);\n",
      "import matplotlib.pyplot as plt\n",
      "pyplot.title(\"Flow convergence loss in a conical nozzle\")\n",
      "pyplot.xlabel(\"Discount factor against f\")\n",
      "pyplot.ylabel(\"f ( *10^3 Pound)\")\n",
      "pyplot.plot(x,y)\n",
      "pyplot.show()\n",
      "import matplotlib.pyplot as plt\n",
      "x = numpy.array([f_1 ,f_2 ,f_3]);\n",
      "y = numpy.array([r_d1, r_d2, r_d3]);\n",
      "pyplot.scatter(x,y)\n",
      "\n",
      "pyplot.title(\"Discount factor against f\")\n",
      "pyplot.xlabel(\"f ( *10^3 Pound)\")\n",
      "pyplot.ylabel(\"Discount factor(%)\")\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.14\n",
        "\n",
        "\n",
        "Page No. 74\n",
        "\n",
        "\n",
        "the internal rate of return in percentage is  19.55  \n",
        "\n",
        "\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEZCAYAAACervI0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe8FNX5x/HPQ0dAir2gaFSMBmsEVJRr+SVqEhSNUWND\no2J5qcGoMUYFMdbYoz8TESyooGL5adQoGq89NlSwSyygFAvYG8Lz++Oci8Oye+/ee3d3tnzfr9e+\nmJ3ZmXl27zJnzznznGPujoiI1J42aQcgIiLpUAEgIlKjVACIiNQoFQAiIjVKBYCISI1SASAiUqNU\nABSRmfUxs0Vmps+5jJlZvZn9rkTn+pOZjSnFuYrBzF4ys21beYxRZja+UDG1hpm9Y2Y7pB1HWtql\nHUA1MLN3gBWBhXGVA+ulFpA0l8dH8U/kfnYpzlMs7v6TQhymAMcolJL97cuRfpkWhgO/dPdu8bGs\nu89JO6i0mZl+YEg2lnYAEqgAKCEzW9XM7jSzj83sTTM7JK7vZGZfm1mv+PzPZrbAzLrG52eY2UU5\njtnLzK42s/fNbJ6Z3Z7Ydmg8z8dm9n9mtkpi2yIzG25mb5jZfDO7LK7vaGafmNmGideuYGZfmdny\n8fkvzeyFuN/jZtYv8dp3zOxEM5sKfG5mbc3sADN718w+MrNTktVuC04ys+lx+01m1jNua2hCa9j/\nQzM7OXGuNmZ2ctz3MzN71sxWj9vWN7PJ8b2/ZmZ75vk3skSMc83sWjNbNvF3uj7GOd/MnjazFeO2\nYWb23xjHW2b22xzHX9z80dT7y7LvL8zseTP71MxmmNnIJt7LrvHv9Gn8jH4e12f9Hibiuzm+788s\nNPlsntie/Nu1zfL5rxa3XRJj/DSuH5Tn519nZu+Z2XHx859lZsMS27ub2XVm9kGM5c9mZnHbi2b2\neeKxyMwGm9llGesXmNlpWc6d87tYtdxdj1Y+gLeBHbKs7wMsAtrE548AlwEdgI2BD4Dt4raHgd3j\n8v3Am8BOif12zXHuu4EJQHdCk942cf32wIfAJvF8lwIPJ/ZbBNwJLAv0jrH8PG4bC/wl8dqjgHvi\n8qbAXGALwi+5A+L7bx+3vwNMAVYDOgIbAJ8DWwHtgb8C3wHbx9cfCzwBrBq3/x24MePz+0c81kbA\nN0DfuP0EYCqwbnzeD+gFdAFmAgcSfuRsEj+LH+f4DB8CDo7LB8fPvk88zq3AdXHb8PiZdYrvfVOg\nW3zdp4k4VgI2yHGukcD4Jt7f+jn2HQxsmHivcxr5XvQHPiF+L+Pn2/C5NfY9HAV8DewU3+NZwJMZ\n3/XtG/v84/K+QM/4+R8HzAY6JM4xPkfcdcCC+Jq2wM7Al0D3uP064Pb4ma8JvN7wt8s4zmHAK0DX\njPWbxPe7cZb3k/O7WK2P1AOohgfhovc5MD8+bovrG/6DtyFcZL8HuiT2Owu4Oi6PBi6JX/rZwNHA\n2YSLzVdAzyznXYXQ79A9y7axwDmJ510IF9414vNFwFaJ7TcBf4zLOwDTE9seB/aLy1cAozPO9Ro/\nFDxvA8MS204Dbkg87wx8m/hP90rDcuI9fRc/s4bPb9XE9qeA38Tl14FfZXnvewGPZKz7B3Bajr9f\nsgB4EDg8sW29GE9b4KD4WfTL2L9L/LvvDnRu4rsyiqULgMz3t1ee37uLgQtzbPsHcEGW9U19D0cB\n9ye2bQB8lXievGBm/fxzxDOv4XOj6QLgK+KPprhuLqFAaxu/O+snth0GPJRxjEFxn3Uy1q9A+L/6\nmxzvJ+d3MZ/3WIkPNQEVhhN+ifWMj92zvGZVYJ67f5lYN4PwSxlCDaAO2AyYBjxA+MU3gHAxnp/l\nmL3jMT/Nsm0V4N3FAYbzfpw4H4RfkA2+ArrG5XpgGTPrb2Z9CL8SG5qW1gT+EJtA5pvZfGD1+P4a\nzMyI471EHF/HOBr0AW5PHOsVwgVqpTziXB3479JvnTWBARkx/jbjmLks8bkR/kbtCJ3844H7gIkW\nmtzONbN28bPdCzgcmGVm/zSzvnmcK9f765LtRWY2wMweis0fnxBqJMvlOGauz6ap7yGEi2cynk6W\n/U62XOfAzI43s1csNCfOJ9RQl88Ra6aP3X1RRgxd4/7tWfrvszh2M+tN+DFzgLtPT6xvD0wCrnf3\nm3Octw9NfxerigqA0pkF9LLYrh+twQ8XxyeBvsBQoN7dX43bdyFckLOZGY/ZPcf5+jQ8MbMuhIvF\n+00F6u4LgZuBfeLjrsQFYwZwZqKw6+nuXd39puQhEsuzCReKhjg6s+RFawahqSt5vGXcfXZTcRLe\n/zpZ1s8gNHclj9nN3Y/K45hLfG6Ev8H3wFx3/97dR7v7hoQmrV8SmsBw9/vd/WfAyoQaUa5bPVtz\nx8mNwB3A6u7eg9BEkev/cK7PpqnvYXNkPYeZbUNoHtrT3Xu4e09CE1lrO38/IjQP9UmsWxx7/G7d\nAVzk7vdl7Ps34BN3P6WR47fmu1iRVACUiLvPJLQvnm2ho3UjQnvz9XH7V8BzhPb2h+NuTxB+VT68\n9BEhfjHvBf7XzHqYWXv74R7tCcBBZraxmXUkVPP/4+4zcoSY+Z/zRmBvwi/nGxPrxwCHx9qBmVmX\n2DnZlewmAb8ysy3NrAOh+p8819+Bs8xsDVjc4Twkx7EyXQWcYWbrxFg2stCR/k9gPTPbL34m7c1s\nCzNbP49jTgBGWOig7Ur43Ca6+6LYQdnPzNoSmvwWAAvNbEULHa5d4rov+eGW4Ez5XARzvaYrMN/d\nvzOz/oS/Ta4CZSzh77+9hc7y1cysb1Pfw2bK9fl3JRSaH5lZh9jhumwLjr+ExA+TM82sq5mtCYxI\nxD4OeNXdz0/uZ2bDgW2B/Zo4RWu+ixVJBUDxJf+D7kP49TILuI3QJv3vxPaHCc0NTyeedyV02uWy\nP+Gi8xqh6n4MgLs/CJxK6MScBaxFuKBni6vh+eJ17v408AWhSeTexPrngEMJnYjzCB2mB2Q5XsPr\nXyH0Z0yMcXxO6IT7Nr7kEkLH6v1m9hmhJtS/kTiTLiRcEO4n/MIcA3Ry9y+An8X3+z6hFnI2odOz\nKeMITT2PAG8Rmh+OjttWBm6J53qFUDMbT/h/NCKe62NgG+CIHMfPvO882/vL9Z6PBEbHz+lUQlNH\n9pO4P0Pos7iI0BlcT/i1DI1/D7PdF58rnqyfP6GZ7F/AG4Q2968Jv66Tx2vs79rYtqMJBexbwKOE\n/qVxcdtewG6Ju30+s3D30d6E7/+sxLaTshy7qe9i1bHY2VH4A4e2uOsIbacOXOnul8ZfCDcR2mnf\nIXTIfFKUIKTsxF/V8wkddO829XoRKZ5i1gAWACNie+lA4Cgz+zFwEjDZ3dcj3HGRrSSWKmJmvzKz\nZWITyfnAVF38RdJXtALA3ee4+wtx+QvgVUJv/RDg2viya4HdihWDlI0hhOaR94EfsWRTlIikpGhN\nQEucJNxK+DDwE2BGvCsAMzPCLWnVnW0nIlKGit4JHNt8bwWOdffPk9s8lD7FL4FERGQpRR2sKyZf\n3ErI+rsjrp5rZiu7+xwLY9N8kGU/FQoiIi3g7nnnWxStBhCbd8YCr7j7xYlNdxLGaCH+e0fmvlDc\nISqmTnXWXts57jhnwYLCH3/kyJGpp3gr/vTjUPyV96jk2N2b/7u5mE1AWxMSL7azMILh82a2E3AO\n8D9m9gZhwLJzihhDVv36wTPPwLRpsPPO8PHHTe8jIlJtitYE5O6PkbuA2bFY581Xr15wzz1w0knQ\nvz/ccUcoGEREakVNZwK3awfnnw+jR8P228OkSYU5bl1dXWEOlBLFny7Fn55Kjr0lSnIbaHOZmZc6\nrilTYOhQ2G8/OOMMaFPTRaOIVCIzw5vRCawCIOGDD2DPPaFbN7jhBuiebYxNEZEy1dwCQL9zE1Zc\nER54APr0Cf0Cr72WdkQiIsWjAiBD+/Zw2WVw4omw7bZw111pRyQiUhxqAmrEf/4Dv/41HH44nHyy\n+gVEpLypD6DAZs2CPfaAVVeFa64J/QMiIuVIfQAFtuqqUF8PPXvCllvCf7POgCoiUnlUAOShY0cY\nMwaOPBK22gruvz/tiEREWk9NQM30yCOw117whz+Eh7V2mmsRkQJRH0AJzJgRksbWXz/UDJZZJu2I\nRETUB1ASa6wBjz0Wfv0PGgTvanJDEalAKgBaqHNnGD8+DB0xcGDoKBYRqSRqAiqABx6AffeFU0+F\no45Sv4CIpEN9ACl56y3YbTfYYgu4/HLo1CntiESk1qgPICVrrw1PPAGffQZ1dSGBTESknKkAKKCu\nXeHmm2HIkDCY3JNPph2RiEhuagIqkrvvhoMOgrPOgkMOSTsaEakF6gMoI6+/DrvuCjvsABddBB06\npB2RiFQz9QGUkb594amnYOZM2HFHmDs37YhERH6gAqDIuncPE87X1YV+geeeSzsiEZFATUAldNtt\nMHx4aA7ab7+0oxGRaqM+gDL30kshX2DXXeHcc6Fdu7QjEpFqoQKgAsybB/vsA4sWwcSJsNxyaUck\nItVAncAVoFevcJvoppuGzOGpU9OOSERqkQqAlLRrB+edB3/5S7hNdNKktCMSkVqjJqAyMGUK7L57\nGFBu9Gho2zbtiESkEqkPoEJ9+CHsuWcYTuL666FHj7QjEpFKoz6ACrXCCjB5chhUbsAAePXVtCMS\nkWqnAqCMtG8Pl14KJ50EgwfDXXelHZGIVDM1AZWpp56CX/8aDjsM/vxnaKOiWkSaoD6AKjJ7Nuyx\nB6yyClxzDXTrlnZEIlLO1AdQRVZZBR56KOQNbLklTJ+edkQiUk1UAJS5jh3hyivDXMNbbw333Zd2\nRCJSLdQEVEEefRT22gtGjIDjj9fk8yKyJPUBVLmZM2HoUFhvPbjqKlhmmbQjEpFyUVZ9AGY2zszm\nmtm0xLqNzexJM5tqZneambo2m6F371ATaNs2NAm9+27aEYlIpSp2H8DVwE4Z664CTnT3jYDbgROK\nHEPV6dwZrrsODjgABg6E+vq0IxKRSlTUAsDdHwXmZ6xeN64HeADYo5gxVCuz0BcwfjzsvTf87W+g\nVjMRaY407gJ62cx2jct7Ar1TiKFq7LgjPPEEjBkDv/sdfPNN2hGJSKVIYz6qg4FLzexU4E7gu2wv\nGjVq1OLluro66urqShFbRVp7bXjySTjooDCExG23wWqrpR2ViBRbfX099a1oAy76XUBm1ge4y937\nZdm2HjDe3QdkrNddQC3gDuecA5ddBrfcAlttlXZEIlJKZXUXUDZmtkL8tw1wCnBFqWOoVmbwpz+F\n5qDddgv/iojkUtQagJlNAAYDywNzgZFAV+Co+JJb3f3kLPupBtBKb7wRJp7fbju4+GLo0CHtiESk\n2JQIJot99hnsv3+YhH7SJFhppbQjEpFiKvsmICmdZZeF22+H7bcPk88/+2zaEYlIOVENoEbcfjsM\nHw4XXBBqBSJSfdQEJDm9/HLoFxgyBM47D9qlcROwiBSNCgBp1Pz5sM8+8P33cNNNsNxyaUckIoWi\nPgBpVM+ecPfdsPnmoV9g6tS0IxKRtKgAqEFt28K558JZZ4WhJG65Je2IRCQNagKqcc8/H+YX+O1v\n4YwzQuEgIpVJfQDSbB9+CL/5TZhc5oYboEePtCMSkZZQH4A02worwP33wzrrQP/+8OqraUckIqWg\nAkAAaN8eLrkETj45jCh6551pRyQixaYmIFnK00/DHnvAoYfCKadAG/1MEKkI6gOQgpgzJxQCK60E\n114L3TRzs0jZUx+AFMTKK8O//w3LLx/mHZ4+Pe2IRKTQVABITh07wpVXwjHHwNZbw333pR2RiBSS\nmoAkL489Fm4V/f3v4YQTwuQzIlJe1AcgRTNzJuy+e7hddOzYkDcgIuVDfQBSNL17wyOPhFtGt94a\n3nkn7YhEpDVUAEizdO4c7goaNgy23BIeeijtiESkpdQEJC324IOw774heezoo9UvIJI29QFISb39\nNuy2G2y2GVxxBXTqlHZEIrVLfQBSUmutBU88AV99FYaQeP/9tCMSkXzlVQCYWRczW9/M+ppZl2IH\nJZWlSxeYODHcIdS/Pzz+eNoRiUg+cjYBmVk34FBgb2B5YC5gwErAx8ANwBh3/6LgQakJqGLdey8c\neCD85S9w2GFpRyNSWwrWB2BmDwITgTvdfW7GtpWBIcBe7r5DK+LNdW4VABXszTfD5PODB4cRRjt0\nSDsikdqgTmApC599BvvvD/PmwaRJYVA5ESmuQtYANmtYBJZ6kbtPaVGE+QSlAqAqLFoEo0fDuHFw\n223w05+mHZFIdStkAVBPuPB3BjYHpsZNGwHPuvuWrQu1kaBUAFSVO+4I/QHnnw8HHJB2NCLVq2C3\ngbp7nbtvB8wCNnP3zd19c2DTuE4kL7vtFjKGzzgDRoyA779POyIRgfxuA13f3ac1PHH3l4AfFy8k\nqUYbbhhmGnvtNfj5z+Gjj9KOSETyKQCmmtlVZlZnZtuZ2RjgxWIHJtWnZ0/45z9hiy1CvsCL+haJ\npKrJu4DMrDNwBLBNXPUIcIW7f1O0oNQHUPVuuimMH3TZZWGeARFpPd0GKhXjhRdg6FDYe++QONa2\nbdoRiVS2ghcAZjYIGAn0AdrF1e7ua7c0yCaDUgFQMz76KNQAOnWCG2+EHj3SjkikchWjAHgd+D0w\nBVjYsN7di9aNpwKgtixYEKaZvOeecMvoBhukHZFIZWpuAdCu6Zfwibvf24qYRBrVvj1cfDFssgnU\n1cGYMWEoCREprnxqAOcAbYHbgG8b1ueTCWxm44BfAB+4e7+4rj9wGdAe+B440t2fydhPNYAa9fTT\nsMcecMghcOqp0EYDlovkrRhNQPVkHwpiuzyC2Qb4ArguUQDUA2e7+31mtjNwYuaxVADUtjlzQiGw\n4opw3XXQrVvaEYlUhoJPCNOQEZz5yOfg7v4oMD9j9Wyge1zuAWgKEVnCyiuHzOEVV4SBA2H69LQj\nEqlO+dQARhJqAEsMCufuo/M6gVkf4K5EDWBN4LF4rDbAlu4+M2Mf1QAEgH/8A047LUxEv9NOaUcj\nUt6KMSXkl/HxBbAI2IVwS2hLjQWOcfc1gBHAuFYcS6rc8OFw661w8MFw1llhhFERKYxmJ4KZWUfg\nfncfnOfr+7BkDeAzd182LhvhLqPuGfv4yJEjFz+vq6ujrq6uWXFKdXnvPfjtb8PkMuPHwyqrpB2R\nSPrq6+upr69f/Pz0008vbiawmfUCnnb3dfJ8fR+WLACmACPc/WEz2wE4x923yNhHTUCylIUL4cwz\n4YorYOxY2GWXtCMSKS/FuAtoWuJpG2BFYLS7/y2PYCYAg/lhTuHTgGnA5UBH4GvCbaDPZ+ynAkBy\neuwx2HffMAn9OedAx45pRyRSHopRAPSJi064b/8Dd1/Q0gDzCkoFgDRh3jw49FB46y2YOBH69k07\nIpH0FeM20HcIt2sOAYYCStSX1PXqFeYaPvxwGDQIrr4a9JtBpHnyqQEcCxxKyAQ2YDdgjLtfWrSg\nVAOQZnj55TCiaL9+oX+ge/em9xGpRsXqAxjo7l/G512A/zR06haDCgBprq+/huOPh3vvhQkTYMCA\ntCMSKb1i5AFAuP8/27JIWejcGS6/HC64AIYMCZ3DyhkQaVw+NYDjgGEs2QR0jbtfVLSgVAOQVpg5\nM9wlpJwBqTXF6AS+kFAAzAc+BoYV8+Iv0lq9e4exhLbdFjbbLMwzICJLy1kDMLOBwD+AdYCpwO/c\n/ZWSBKUagBSIcgaklhSyBnA5cDywHHAhoF/9UnEGDYLnn4cZM8LIoq+/nnZEIuWjsQKgjbtPdvdv\n3P0WQgawSMVRzoBIdo01Ab1FqAE0VCf+mnju7n5b0YJSE5AUiXIGpJoVLA/AzK5hyZnAMucDOKiF\nMTYdlAoAKSLlDEi1KngiWBpUAEgp3H57aBYaMQJOPFHzD0vlUwEg0gzKGZBqUqxMYJGqpJwBqWWq\nAYhEyhmQSlfQGoCZrR5nAMPM1jGzX5vZeq0NUqQcKWdAak3OAiAOA/0Y8JSZHQncA+wM3GlmB5Qo\nPpGSUs6A1JLGbgN9GegPdAZmAD9y99lm1hP4t7tvWrSg1AQkZUA5A1JpCtkE9J27f+nuHwHT3X02\ngLvP54fkMJGqteGG8PTT0LMnbLopPPVU2hGJFFZjBcAiM2sfl3dpWGlmnVEBIDVC8wxINWusCWhN\nYFbmBPBmthrwY3d/oGhBqQlIypByBqTcFawJyN3fzbz4x/XvF/PiL1KulDMg1SafGcEOcverSxRP\nwzlVA5CyppwBKUeFzgM4Ddix1VGJVBnlDEg1aCwPYAywAbB/6cIRqRzKGZBK11gn8OfAgFJNA5lx\nbjUBSUVRzoCUg0I2Af0KuMXM1ml9WCLVTTkDUoka7QQ2s58AV7n7wNKFpBqAVDbNMyBpKfh8AGa2\nmru/3+rImkEFgFQ65QxIGgo+H0CpL/4i1UA5A1IJmmoC2gnYDVgtrnofuMPd/1XUoFQDkCqinAEp\nlUJOCn8JsC5wHeHCD7A64bbQ6e5+TCtjzR2UCgCpMvPmwaGHwltvwcSJ0Ldv2hFJNSpkAfCmu6+b\nZb0Bb7p70e4OUgEg1cgdrrwSTjkFzjsPhg0D07CKUkCF7AP4xsz6Z1nfH/i62ZGJ1DgzGD4c6uvh\nwgtDs9Cnn6YdldSyxgqAYcBlZvaqmU2Oj1eBS+M2EWkB5QxIucjnNtBVSHQCN0wMU9Sg1AQkNUI5\nA1JIBc8DyHGS9d39tTxeNw74BfCBu/eL6yYCDV1gPYBPMqeXVAEgtUQ5A1IoBc8DyGFynq+7Gtgp\nucLd93b3TeNF/9b4EKlZyhmQtDR2F9DfGtlvmLt3y+sEZn2AuxpqAIn1BrwLbOfu/83YphqA1CTl\nDEhrFLIGMAx4CXgOeDbxeA74rhUxNtgGmJt58RepZZpnQEqpXSPbngVecvfHMzeY2agCnHsf4MYC\nHEekqjTMM3DllaFAUM6AFEtjBcAewDfZNrh7n9ac1MzaAUOBzXK9ZtSoUYuX6+rqqKura80pRSpK\nQ87AoEFhnoHJkzXPgCytvr6e+vr6Fu/f1FhAG7v7i2a2kbtPbdEJsvQBxDGG/uju2+XYR30AItHX\nX8Pxx8O998KECTBgQNoRSbkq9F1AB5vZusDvWhjMBOAJYD0zm2lmB8VNewETWnJMkVrTuTNcfjlc\ncAEMGRI6hxctSjsqqQaN3QU0Elge2Be4HvjY3U8vSVCqAYhkpZwBaUzBagDxYj8ZuAl4oFQXfxHJ\nTTkDUkhNNQENcPcjgC1KEYyINK1tWzjtNLjlFjjiiDCMxLffph2VVKIWDQVRbGoCEsmP5hmQpFIN\nBSEiZaAhZ+Dww8Mto1dfHeYdEMmHagAiVeLll0POQL9+yhmoVaoBiNQozTMgzZWzADCzcWaWs/PX\nzAaY2dXFCUtEWkI5A9IcjeUB9ANOAAYCrwOzAQNWJozn/wRwvru/VPCg1AQk0mrKGag9BZ8Qxsw6\nApsCawJOGML5RXfPOk5QIagAECmMhQvhzDNDn8DYsbDLLmlHJMVUkhnBik0FgEhhaZ6B2qBOYBFZ\niuYZkGxUAIjUCOUMSKbG7gIaH//9fenCEZFiaphnoL4eLrwwNAt9+mnaUUlaGqsBbG5mqxKGhO6V\n+ShVgCJSeMoZEGj8NtBjgCOAtYFZGZvd3dcuWlDqBBYpmdtvD81CI0bAiSdCGzUMV6xi3Ab6d3c/\nvNWRNYMKAJHSUs5AdSj4XUClvviLSOlpnoHapDwAEVmCcgYql/IARKRVlDNQO1QAiMhSlDNQG9QE\nJCKN0jwDlUNNQCJSUMoZqF6qAYhI3pQzUN40GqiIFJVyBsqXmoBEpKiUM1A9VAMQkRZTzkB5UQ1A\nREpGOQOVTQWAiLSKcgYql5qARKRglDOQLjUBiUhqlDNQWVQDEJGiUM5A6SkPQETKhnIGSktNQCJS\nNpQzUN5UAxCRklDOQPGpBiAiZUk5A+VHBYCIlIxyBspL0ZqAzGwc8AvgA3fvl1h/NHAksBC4293/\nmGVfNQGJVDnlDBReOTUBXQ3slFxhZtsBQ4CN3P0nwPlFPL+IlDHlDKSvaAWAuz8KzM9YfQRwtrsv\niK/5sFjnF5Hy17kzXH45XHABDBkSOocXLUo7qtpR6j6AdYFtzew/ZlZvZj8t8flFpAwNHQrPPhtu\nE/3Zz2D27LQjqg3tUjhfT3cfaGZbADcDa2d74ahRoxYv19XVUVdXV4r4RCQlDTkDZ54ZcgbGjoVd\ndkk7qvJWX19PfX19i/cvah6AmfUB7mroBDaze4Fz3P3h+Hw6MMDdP87YT53AIjVMOQMtU06dwNnc\nAWwPYGbrAR0yL/4iIsoZKI2iFQBmNgF4AljPzGaa2UHAOGBtM5sGTAAOKNb5RaSyKWeg+DQUhIiU\nPeUM5Kfcm4BERJpNOQPFoRqAiFQUzTOQm+YDEJGqp3kGslMTkIhUPc0zUBiqAYhIRVPOwA9UAxCR\nmqKcgZZTASAiFU85Ay2jJiARqSq1nDOgJiARqWnKGcifagAiUrVqLWdAeQAiIgm1lDOgJiARkQTl\nDOSmGoCI1IxqzxlQDUBEJAflDCxJBYCI1BTlDPxATUAiUrOqLWdATUAiInmq9ZwB1QBERKiOnAHl\nAYiItFCl5wyoCUhEpIVqLWdANQARkSwqMWdANQARkQKohZwBFQAiIjlUe86AmoBERPJQCTkDagIS\nESmCaswZUA1ARKSZyjVnQHkAIiIlUI45A2oCEhEpgWrIGVANQESklcolZ0A1ABGREqvUnAEVACIi\nBVCJOQNqAhIRKbC0cgbUBCQikrJKyRlQDUBEpIhKmTOgPAARkTJTqpyBsmoCMrNxZjbXzKYl1o0y\ns/fM7Pn42KmYMYiIpK1ccwaK3QdwNZB5gXfgQnffND7+VeQYSq6+vj7tEFpF8adL8aenmLG3bQun\nnQa33AJHHBGahL79tminy0tRCwB3fxSYn2VT3lWUSlTJ/wFA8adN8aenFLGXU85AWncBHW1mL5rZ\nWDPrkVIMIiKpKJecgTQKgCuAtYBNgNnABSnEICKSKjMYPhzq6+HCC+Gww1KIodh325hZH+Aud++X\n7zYz0y0ruiPrAAAIbElEQVRAIiIt0Jy7gNoVM5BszGwVd58dnw4FpmW+pjlvQEREWqaoBYCZTQAG\nA8ub2UxgJFBnZpsQ7gZ6GxhezBhERCS7skwEExGR4ivbsYDM7K9m9mq8W+g2MyvDKZiXZmY7mdlr\nZvammf0x7Xiaw8x6m9lDZvaymb1kZsekHVNzmVnbmGB4V9qxNJeZ9TCzSfF7/4qZDUw7puYwsz/F\n7840M7vRzFIaFT8/ORJVe5nZZDN7w8zuL+e7FHPE36zrZtkWAMD9wIbuvjHwBvCnlONpkpm1BS4j\nJL9tAOxjZj9ON6pmWQCMcPcNgYHAURUWP8CxwCuEJsZKcwlwj7v/GNgIeDXlePIWb+g4FNgs3tTR\nFtg7zZjykC1R9SRgsruvBzwYn5erbPE367pZtgWAu09290Xx6VPA6mnGk6f+wHR3f8fdFwATgV1T\njilv7j7H3V+Iy18QLkCrphtV/sxsdWAX4CoqLNkw/lLbxt3HAbj79+7+acphNcdnhB8Qy5hZO2AZ\n4P10Q2pcjkTVIcC1cflaYLeSBtUM2eJv7nWzbAuADAcDZTJ6RqNWA2Ymnr8X11Wc+ItuU8KXqFJc\nBJwALGrqhWVoLeBDM7vazKaY2RgzWybtoPLl7vMIOT0zgFnAJ+7+QLpRtchK7j43Ls8FVkozmFZq\n8rqZagEQ29qmZXn8KvGaPwPfufuNKYaar0psdliKmXUFJgHHxppA2TOzXwIfuPvzVNiv/6gdsBnw\nv+6+GfAl5d38sAQz+xHwe6APodbY1cz2TTWoVopDElfk/+l8r5slzwNIcvf/aWy7mQ0jVOl3KElA\nrfc+0DvxvDehFlAxzKw9cCtwvbvfkXY8zbAVMMTMdgE6Acua2XXufkDKceXrPeA9d38mPp9EBRUA\nwE+BJ9z9YwAzu43wN7kh1aiab66Zrezuc8xsFeCDtANqruZcN8u2CSgOE30CsKu7f5N2PHl6FljX\nzPqYWQdgL+DOlGPKm5kZMBZ4xd0vTjue5nD3k929t7uvReh8/HcFXfxx9znATDNbL67aEXg5xZCa\n6zVgoJl1jt+jHQmd8ZXmTuDAuHwgUEk/gpp93SzbPAAzexPoAMyLq5509yNTDCkvZrYzcDHhLoix\n7n52yiHlzcwGAY8AU/mh6vunShuy28wGA39w9yFpx9IcZrYxoQO7A/Bf4KBK6gg2sxMJF81FwBTg\nkHgzRFlKJqoS2vtPA/4PuBlYA3gH+I27f5JWjI3JEv9Iwl0/eV83y7YAEBGR4irbJiARESkuFQAi\nIjVKBYCISI1SASAiUqNUAIiI1CgVACIiNUoFgLSKmS2Mwy+/ZGYvmNlxMREIM9vczC5JOb6TG9m2\nZxx2+cEWHPfAmClaFszsbjNbtgX7DTazLXNs62BmD8S/756tj1LKjfIApFXM7HN37xaXVwBuBB53\n91GpBhYl48uy7V/AaHd/ogXHfQg43t2fa8Y+bRIjNZYFMxsFfO7uF2TZNhA4o6khW6SCubseerT4\nQbh4JJ+vBXwUl+uAu+LyYOD5+JgCdInr/0jIPH4BODuu2wT4D/AicBvQI66vBzaPy8sDb8flYfF1\n9xLGQD83rj8H+D6ec3xGnKcBnxOGMDgPWJOQBf1cfGyZeO0SMQJ7JPadQhh7aIe4PJUwnEaHuO87\nMY7nCFmlyRh+Fd/nFGAysGJcv0J8/hIwJh6jV9x2O2HIkZeAQxPHegfoRRiM7VXgyvia+4BO8TXH\nEIaXeJFQUK8JzCaMQ/Q8MChxvBWBN4FP4ra10/6u6VGE/79pB6BHZT8yC4C4bn68iCULgDsbLqqE\nseLbAjsDjycuUA0X+qmEsfEBTgcuissPESYcyVYA/BfoBnSMF8PVcsWXiDN5vM5Ax7i8LvBMXM4V\nY3LfToRhkNeJz68ljKQKYd7r43Ocv0di+RDg/Lh8GfDHuPxzwtAKDQVAz0S80xLP304UAAuAjeL6\nm4B94/L7QPu4vGz8dyRwXI74Bjf8/fSozof6AKRUHgcuMrOjCRethYRfzeM8Dlrl7p/EiVG6e5js\nAsLFdNs8jv+gu3/u7t8SBiFbM8+4GoaO7gBcZWZTCWPBNMyEtmNmjFn27UsojKbniPmmHOfuHacd\nnAocT5hFDmBrwmRCuPt9LDnpx7Fm9gLwJGG02XWzHPdtd58al58jFAoQCtYb4zDNC7O8j0yVOKy2\nNIMKACkoM1sbWOjuHybXu/u5wO8Iv1wfN7O+Dbs0dcjE8vf88J3tlPG6bxPLC8l/qPOGTrARwGx3\n34gwtHHHxPZcMebqQLOMbV/meN3fgEvjOYcTPpvkMZY8qFkdodAc6O6bEJpmMj8HyP1Z/AK4nDDv\nwDNxClOpYSoApGBiJ/DfCRe2zG0/cveX3f084BnCr+bJwEFm1jm+pqeH0S/nx5FJAfYntP1DaNr5\naVz+dZ5hLYhTFDZlWWBOXD6A0ERFthjj+s/jPgCvA33ipCgNMT+c5zlnxeVhifWPA7+J5/sZ0DPx\n+vnu/o2ZrU+Ytzkv8c6sNdy9njDPQHega3wfWTvJpfqpAJDW6txwGyjhYvkvdz89bkvOqHRsnO3t\nReA74N7YvHEn8KyZPQ/8Ib72QOCv8bUbAaPj+vOBI8xsCrBc4tiNzdx0JTDVzMY38T7+FzgwNq/0\nBb6AxU0w2WK8Bvh7jAXgIOCW2JzzPaEgbIgtl1Fxn2eBDxOvPR34mZlNIxR0cwgX6n8B7czsFUJn\n9JM5jpt5TicUaONjfFOAS2JhexcwNP4Nt86yn24TrGK6DVSkzMTJhBa6+8J4j/7lHqaJFCmoVKeE\nFJGs1gBuNrM2hNrSoSnHI1VKNQARkRqlPgARkRqlAkBEpEapABARqVEqAEREapQKABGRGqUCQESk\nRv0/gTaB3ubmZv8AAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x2fc0e30>"
       ]
      },
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 4,
       "text": [
        "<matplotlib.text.Text at 0xda4f2d0>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEZCAYAAACervI0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHthJREFUeJzt3XmcZFV9/vHPwz4ICIoLAjpRlpg4IKiAoqFdhsFEMYSg\nJkRHxCyaREREgRjoqAmgjks0IQEZGFzg508YMyRqg8RmiUZFkGFTcGGHwYWdQZZ58sc9PdQU1T1V\n3X27quc+79erXtw6dznfqmnut865554r20RERPOs1+8AIiKiP5IAIiIaKgkgIqKhkgAiIhoqCSAi\noqGSACIiGioJIHoi6SRJH+x3HJMl6Z2SVki6V9JW/Y5nJkg6WtIpM1TXaZJ+Lel/Z6K+mBrlPoAY\nI+kG4OnAo8BjwDXAGcDJngV/KCX+t9v+73HWbwjcA+xh+6op1rUK2MH2z6ZynNlC0lzgZ8AGtleN\ns80rgC8BO9p+aOaii8lKCyBaGXid7S2AZwMnAB8ATu1rVN0zoAnWPxPYBLh2muqbqK7xd5I2mKb6\n+2Giz/wc4Iac/GePJIDoyPZ9ts8F3gQslPQ7AJJOl/Thsry1pP+UdJekX0m6SJLKuu0lnSPpTkm/\nlPSZUr6epA9KuqF0xSyRtEVZNyTp5tY4ynavKsvDkr5c9rlX0lWSXlTWfZ4qaZ0r6T5J72s7zk48\nfuK/W9I3S/mnJd0k6R5Jl0p6ecs+60k6RtJPSn3fl7SdpIvKJleUug4q2/+5pOvLd/EfkrZpOdYq\nSe+SdD3w407fuaT/L+l2SXdLunDsOy/rnirp3BLn9yR9RNLFLesn+hzD5ftB0twSy1sl3SjpF5KO\nadl2j7L/PZLukPTxsmrsM99dPvOebbEfCpwCvLSsP67TZ4wBYzuvvLAN8HPgVR3KbwT+siyfBnyo\nLB8PnASsX157l/L1gSuARcAcYGPgZWXd24HrgbnAk4CzgTPKuiHg5vFiAoaBlcB+VL9E/wn4ztri\nb1n/HGAVsF5L2cHAVlQ/ht4L3A5sVNYdCSyn6tIA2AV4SlleBTy35TivAn4BvBDYCPhn4MKW9auA\nEWBLYONx4ntb+U42BD4JXN6y7iyq7pVNgOcDNwEXdfk5jgM+X5bnllj+vfy77AI8BOxc1n8HOLgs\nbwrsOd531yH+hcDF/f47zqv7V1oA0Y3bgKd0KH8Y2AaYa/sx2/9Tyvco5UfaXmn7N7a/XdYdDCyy\nfYPtB4CjgTdL6vZv8WLb33B1xvkCsGsPn+MJ3Re2v2j7LturbH+C6qS4c1n9DuDvbF9ftl1u+9fj\nHPtg4FTbP7T9cPlcL5X07JZtjrd9t+3fdDqA7dNtP2D7EeAfgF0lbS5pfeCPgONsP2T7WmBJ6+dZ\ny+fo1G3zD+XfZTlVsh77Hh8GdpS0te0HbX93gmO0m1SXWPRPEkB0Yzug9cQ39j/6x4CfAOdJ+qmk\nD5Ty7YEb3fli4TZULYoxNwEbAM/oMpYVLcsPApv0kDyeQNL7JF1Tul3uAp4MbF1Wbwf8tMtDrfG5\nSnL7FbBtyzY3t+/UEsd6kk4o3U33ULVmXGJ5GtV31Lr/LT18jk7uaFl+ENisLB8K7ARcW7qa/mCC\nY8QslwQQE5L0EuBZwCXt62zfb/t9tp8H7A+8t/TX3wQ8u/xybXcbVTfEmGdTjTpaATxA1e0wVvf6\nVCe/bvU0UqmMWjkSOMj2lra3oholNJbgbgZ26PJwa3wuSU8Cngrc2mV8B1N9h6+2/WTgt0ocoupa\nepQqsY5ZvdzF5+ia7Z/Y/lPbTwNOBL4iac5aYo9ZKgkg2o1dxN1C0uuAM6n6j69uXV+2eZ2kHcqF\n33upho4+BnyPqg/6BEmbStpE0svKbmcCh5eLkZtR9eOfVVoL11H9ov99VUM2P0jVldGtFcDzeth+\nc6oT6y8lbSTpWGCLlvWfAz489hkl7SJprCusva4zgUMk7Spp4/K5/tf2TV3GshnwG+DXJXn809gK\n248B5wDDkuZI+m3gLTx+Ul7b5+iapD+TNJZ07yl1rKJKQqvo7fuNAZcEEO3OlXQv1a/4o6ku5B7S\nst48fuLZATgfuA/4NvAvti8sJ/PXl/U3Uf2SfmPZZzHweapRJT+j6n74WwDb9wDvojrx3gLcz5rd\nHq11t5aNOR74oKpRSe8d5/O1bv+N8roOuIHqAnPrCfsTwJeB86hOhqdQXYSF6oL0klLXH9u+APh7\nqovat1H9gn/zOPV2cgZVF9KtwFVUF2Nb9/kbqm6dO6j6/8+k6q/v5nO0f28TxbIAuErSfVQXot9c\nrhU8CPwj8D/lM+/RYd9O/z4xwGq7EUzS9lR/1E+n+qM42fY/lyFzw8BvAy+xfVktAUSswySdCDzd\n9iFr3ThiHHXekPIIcLjtH5am/g8knQ9cCRxANQwtIrogaWeq7rArgZdQDac9tK9BxaxXWwKwfQdl\npIHt+yVdCzyrNJWpuo0jokubU3X7PIvq+sPHbS/rb0gx283ILemq5hHZDfjuxFtGRCe2LwV27Hcc\nsW6p/SJw6f75CnCY7fvrri8iIrpTawugDOU7G/iC7a/2sF9GEkRETILtrvvXa2sBlLHhpwLX2P7U\neJuNt3+/58iYyuu4447rewyJv/9xJP7Z95rNsdu9/26uswWwN/BnwHJJl5eyY6hGMnyG6jb1/5J0\nue3X1hhHRER0UOcooEsYv4XRdXdQRETUI3cC12BoaKjfIUxJ4u+vxN8/szn2yRjIR0JK8iDGFREx\nyCThQbgIHBERgy0JICKioZIAIiIaKgkgIqKhkgAiIhoqCSAioqGSACIiGioJICKioZIAIiIaKgkg\nIqKhkgAiIhoqCSAioqGSACIiGioJICKioZIAIiIaKgkgIqKhkgAiIhoqCSAioqGSACIiGioJICKi\noZIAIiIaqrYEIGl7Sd+SdLWkqyS9u5Q/RdL5kq6TdJ6kLeuKISIixldnC+AR4HDbvwvsBfy1pOcD\nRwHn294JuKC8r93IyAj77nsg++57ICMjIzNRZUTEQJPtmalI+irw2fLax/YKSc8ERm3/dtu2ns64\nRkZGOOCAhaxceSIAc+Z8gKVLl7BgwYJpqyMiot8kYVtdbz8TCUDSXOBC4AXATba3KuUCfj32vmX7\naU0A++57IOefvz+wsJQsYf78ZZx33tnTVkdERL/1mgA2qDMYAEmbAWcDh9m+rzrnV2xbUscz/fDw\n8OrloaEhhoaG6g00ImKWGR0dZXR0dNL719oCkLQh8J/A121/qpT9CBiyfYekbYBvpQsoImLqBqYL\nqHTvLAF+ZfvwlvKPlrITJR0FbGn7qLZ9pzUBQJUEFi06GYAjjviLnPwjYp0zSAng5cBFwHJgrJKj\nge8BXwaeDdwAvNH23W37TnsCiIhY1w1MApiKJICIiN71mgByJ3BEREMlAURENFQSQEREQyUBREQ0\nVBJARERDJQFERDRUEkBEREMlAURENFQSQEREQyUBREQ0VBJARERDJQFERDRUEkBEREMlAURENFQS\nQEREQyUBREQ0VBJARERDJQFERDRUEkBEREMlAURENFQSQEREQyUBREQ0VBJARERD1ZoAJC2WtELS\nlS1lu0r6jqTlkpZJ2rzOGCIiorO6WwCnAfu1lX0OeL/tXYClwJE1xxARER3UmgBsXwzc1Va8YykH\n+CZwYJ0xREREZ/24BnC1pDeU5YOA7fsQQ0RE423QhzrfDvyzpL8HlgEPd9poeHh49fLQ0BBDQ0Mz\nEVtExKwxOjrK6OjopPeX7emLplMF0lzgXNvzOqzbCfi87T3byl13XBER6xpJ2Fa32894F5Ckp5X/\nrgd8EDhppmOIiIi1dAFJ2hDYF/g9YC5g4EbgImDE9qNr2f9MYB9ga0k3A8cBm0n667LJ2bZPn8oH\niIiIyRm3C6j00R8IfAf4HnAbVYthG2APYC/gK7Y/Mu1BpQsoIqJnvXYBTZQA9qfqu++4QenCeZ3t\nZZOKdKKgkgAiIno2bQlgnINvAmxk+97JBNdDPUkAERE96jUBdD0MVNI7gD8G1pd0qe2jJxNgREQM\nhnFHAbXcrDVmvu39bM8H/qDesCIiom4TDQOdVyZre2F5v1zSqZI+B1w1A7FFRESNJrwGIGkb4EOA\nqMbsbw7Msb281qByDSAiomfTehG4TNW8CtiRKhFcCnzU9kNTDXTCoJIAIiJ6Nm13Akv6R+Bs4D+B\nV9reH7gC+Jqkt0450oiI6KuJ7gO4wvauZbz/D2zvVso3BN5l+9O1BZUWQEREz6bzRrAvAg8Cc4Bf\n2D58ekLsIqgkgIiInk33NYBdgIdt/2g6gutWEkBERO+m8xrAPraXT3Tyl/TKXgOMiIjBMNGdwK+X\n9DGqxzZeCtxOlTCeCbwYeA3wrfKKiIhZppthoG8A9gaeU4pvBC4B/sP2/bUElS6giIieTfdcQA8A\nj9h+59TCioiIQTPhE8FsrwLeP0OxRETEDFrrdNCSTgB+Cfw/qhYBALZ/XVtQ6QKKiOjZtD8PQNIN\nVI+CbGXbz+09vC6DSgKIiOhZrQ+EmSlJABERvZv2B8JI2gh4J9WD4Q1cCPyb7UcmHWVERPRdN11A\np1IliiVU00K/BXjU9jtqCyotgIiIntVxDWC57V3WVjadkgAiIno3bVNBtHhU0g4tFTwPeHQywUVE\nxODo5qHwRwL/Lenn5f1c4JBuDi5pMdXzg++0Pa+U7QF8FtiQKpG8y/b3e4w7IiKmqJsuoE3K4s7l\nvz8G6OapYJJeAdwPnNGSAEaB422PSHot8H7br2zbL11AsdrIyAiLFp0MwBFH/AULFizoc0QRg2na\nRwEB37a9O9XTwMYquQzYfW072r5Y0ty24tuBJ5flLYFbu4o0GmlkZIQDDljIypUnAnDJJQtZunRJ\nkkDENBg3AZQHwj8L2FTS7lQjgAxsAWw6hTqPAi6R9HGqaxAvncKxYh23aNHJ5eS/EICVK6uyJICI\nqZuoBbAv8DZgW2BRS/l9wDFTqPNU4N22l0o6CFgMzG/faHh4ePXy0NAQQ0NDU6gyImLdMzo6yujo\n6KT37+YawIG2z550BVUX0Lkt1wDutb1FWRZwt+0nt+2TawABPLELaM6cD6QLKGIcdQwDfbGkLVsq\n2ErSRyYVXeUnkvYpy68CrpvCsWIdt2DBApYuXcL8+cuYP39ZTv4R06ibFsAPbb+wrexy27ut9eDS\nmcA+wNbACuBY4ErgX4CNgZVUw0Avb9svLYCIiB7VMQpoPUmbjA37lDQH2Kibg9v+k3FW7dllfBER\nUZNuEsAXgQvKTV2iugnsjFqjioiI2nU1HXS5Yes1VMNAz7c9UmtQ6QKKiOhZngcQEdFQ0z4KSNJL\nJX1f0v2SHpG0StK9UwszIiL6rZthoJ8F/hS4HtgEOBT41zqDioiI+nWTALB9PbC+7cdsnwbsV29Y\nERFRt25GAT0gaWPgCkkfBe6gGg0UERGzWDctgLeU7f4GeBDYDjiwzqAiIqJ+444CknSB7VdL+qjt\n989oUBkFFBHRs+m8E3gbSS8D9pd0Fo9PBw2A7csmH2ZERPTbRC2Ag6hG/OwNXNq+vv0pXtMaVFoA\nERE9m/YbwSQda/tDU46sB0kAERG9y53AERENVcfzACIiYh2UBBAR0VDdzAX0+W7KIiJidummBfCC\n1jeSNgBeVE84ERExU8ZNAJKOkXQfME/SfWMv4E5g2YxFGBERtehmGOgJto+aoXjG6swooIiIHtUy\nDFTStsBzaLlz2PZFk4qwm6CSACIiejbtD4WXdCLwJuAa4LGWVbUlgIiIqF83XUDXAfNs/2ZmQkoL\nICJiMuq4EeynwEaTDykiIgZRNw+EWQn8UNIFwFgrwLbfvbYdJS0G/gC40/a8UnYWsHPZZEvgbtu7\n9Rx5RERMSTcJYBlPHPbZbf/MacBngDNW72i/eWxZ0seBu7s8VkRETKPaJ4OTNBc4d6wF0FIu4Ebg\nlbZ/2rYu1wAiInpUxyign3cotu3n9hTZE70CWNF+8o+IiJnRTRfQS1qWNwH+GHjqNNT9J8CXxls5\nPDy8enloaIihoaFpqDIiYt0xOjrK6OjopPefVBeQpMts797ltnNp6wIq8wndAuxu+7YO+6QLKCKi\nR3V0Ab2Ixy/6rge8GFh/cuGt9hrg2k4n/4iImBnddAEt4vEE8ChwA/DGbg4u6UxgH+Cpkm4GjrV9\nGtWdxWf2HG1EREybPBIyImIdMe13AkvaUtInJf2gvBZJevLUwoyIiH7rZiqIxcC9wEFUXT/3Ud3g\nFRERs1g3k8FdYXvXtZVNa1DpAoqI6Fkdk8GtlPSKlgpeDjw4meAiImJwdDMK6K+AM1r6/e8CFtYX\nUkREzISuRwGNJQDb99QaEekCioiYjDpGAR0vaUvb99i+R9JWkj4ytTAjIqLfurkG8Frbq6dstn0X\n1Rz/ERExi3WTANaTtMnYG0lzyBPCIiJmvW4uAn8RuKA83UvAIbQ84CUiImanri4CS3ot8Ory9nzb\nI7UGlYvAERE96/UicDc3gj0JeMj2Y5J2pnqe79dtPzK1UCesMwkgIqJHddwIdjGwsaRtgRHgLcDp\nkwsvIiIGRTcJQLYfBP4I+FfbBwEvqDesiIioWzcJAEkvBQ4G/quX/SIiYnB1cyJ/D3A0sNT21ZKe\nB3yr3rAiIqJueSBMRMQ6YtqeCSzp07YPk3Ruh9W2vf+kIoyIiIEw0Y1gYzd7LeqwLj/PIyJmuW5v\nBHsagO1f1B4R6QKKiJiMabsPQJVhSb8ErgOuk/RLScdNR6AREdFfE40COhzYG3iJ7a1sbwXsAewt\n6b0zEl1ERNRm3C4gST8E5rd3+5TuoPNtv7C2oNIFFBHRs+mcCmKDTn3+pWyts4hKWixphaQr28r/\nVtK1kq6SdGK3gUZExPSaKAFMNNlbNxPBnQbs11og6ZXA/sAutl8AfLyL40RERA0m+iW/i6T7xlk3\nZ20Htn2xpLltxe8Ejh+bSXSmRhVFRMQTjdsCsL2+7c3HeXXzIJlOdgR+T9L/ShqV9OJJHiciIqZo\nsifyqdS3le29JL0E+DLw3E4bDg8Pr14eGhpiaGhoJuKLiJg1RkdHGR0dnfT+tc4FVLqAzrU9r7z/\nOnCC7QvL+58Ae9r+Vdt+GQUUEdGjOh4IM52+CrwKQNJOwEbtJ/+IiJgZtXUBSToT2Ad4qqSbgWOB\nxcDiMjT0YeCtddUfERETy3TQERHriEHvAoqIiAGRBBAR0VBJABERDZUEEBHRUEkAERENlQQQEdFQ\nSQAREQ2VBBAR0VBJABERDZUEEBHRUEkAERENlQQQEdFQSQAREQ2VBBAR0VBJABERDZUEEBHRUEkA\nERENlQQQEdFQSQAREQ2VBBAR0VBJABERDZUEEBHRUEkAERENVWsCkLRY0gpJV7aUDUu6RdLl5bVf\nnTFERERndbcATgPaT/AGPmF7t/L6Rs0xREQMrJGREfbd90D23fdARkZGZrTuDeo8uO2LJc3tsEp1\n1hsRMRuMjIxwwAELWbnyRAAuuWQhS5cuYcGCBTNSf7+uAfytpCsknSppyz7FEBHRV4sWnVxO/guB\nKhEsWnTyjNVfawtgHCcBHyrLHwYWAYe2bzQ8PLx6eWhoiKGhoRkILSJi9hgdHWV0dHTS+8v29EXT\nqYKqC+hc2/O6XSfJdccVEdFv7V1Ac+Z8YEpdQJKw3XUX+4y3ACRtY/v28vYA4MqJto+IWFctWLCA\npUuXrO72OeKImev/h5pbAJLOBPYBtgZWAMcBQ8ALqUYD/Rz4S9sr2vZLCyAioke9tgBq7wKajCSA\niIje9ZoAcidwRERDJQFERDRUEkBEREMlAURENFQSQEREQyUBREQ0VBJARERDJQFERDRUEkBEREMl\nAURENFQSQEREQyUBREQ0VBJARERDJQFERDRUEkBEREMlAURENFQSQEREQyUBREQ0VBJARERDJQFE\nRDRUEkBEREMlAURENFRtCUDSYkkrJF3ZYd0RklZJekpd9UdExMTqbAGcBuzXXihpe2A+cGONdffV\n6Ohov0OYksTfX4m/f2Zz7JNRWwKwfTFwV4dVnwDeX1e9g2C2/xEl/v5K/P0zm2OfjBm9BiDpDcAt\ntpfPZL0REfFEG8xURZI2BY6h6v5ZXTxT9UdExJpku76DS3OBc23PkzQP+CbwYFm9HXArsIftO9v2\nqy+oiIh1mO2uf1jPWAvA9pXAM8beS/o58CLbv+6wbVoGERE1q3MY6JnAt4GdJN0s6ZC2TfIrPyKi\nj2rtAoqIiME1sHcCS/qYpGslXSHpHElP7ndM3ZC0n6QfSbpe0gf6HU8vJG0v6VuSrpZ0laR39zum\nXklaX9Llks7tdyy9krSlpK+Uv/trJO3V75h6Ieno8rdzpaQvSdq43zFNpNPNqpKeIul8SddJOk/S\nlv2McSLjxN/TeXNgEwBwHvC7tncFrgOO7nM8ayVpfeCzVDfA/Q7wJ5Ke39+oevIIcLjt3wX2Av56\nlsUPcBhwDbOzi/HTwNdsPx/YBbi2z/F0rQz4+HNgd9vzgPWBN/czpi50uln1KOB82zsBF5T3g6pT\n/D2dNwc2Adg+3/aq8va7VKOGBt0ewE9s32D7EeAs4A19jqlrtu+w/cOyfD/VCehZ/Y2qe5K2A34f\n+ByzbIhx+aX2CtuLAWw/avuePofVi3upfkBsKmkDYFOqUX4Da5ybVfcHlpTlJcAfzmhQPegUf6/n\nzYFNAG3eDnyt30F0YVvg5pb3t5SyWaf8otuN6o9otvgkcCSwam0bDqDfAn4h6TRJl0k6pdw7MyuU\n0XyLgJuA24C7bX+zv1FNyjNsryjLK2gZuTgLrfW82dcEUPraruzwen3LNn8HPGz7S30MtVuzsdvh\nCSRtBnwFOKy0BAaepNcBd9q+nFn267/YANgd+FfbuwMPMNjdD2uQ9DzgPcBcqlbjZpIO7mtQU+Rq\nhMys/H+62/PmjN0H0Int+ROtl/Q2qib9q2ckoKm7Fdi+5f32VK2AWUPShsDZwBdsf7Xf8fTgZcD+\nkn4f2ATYQtIZtt/a57i6dQvVNCnfL++/wixKAMCLgW/b/hWApHOo/k2+2NeoerdC0jNt3yFpG+DO\nte4xYHo5bw5sF5Ck/aia82+w/VC/4+nSpcCOkuZK2gh4E7CszzF1TZKAU4FrbH+q3/H0wvYxtre3\n/VtUFx//exad/LF9B3CzpJ1K0WuAq/sYUq9+BOwlaU75O3oN1cX42WYZsLAsLwRm04+gns+bA3sf\ngKTrgY2AsTuFv2P7XX0MqSuSXgt8imoUxKm2j+9zSF2T9HLgImA5jzd9j7b9jf5F1TtJ+wBH2N6/\n37H0QtKuVBewNwJ+Chwymy4ES3o/1UlzFXAZ8I4yGGIglZtV9wG2purvPxb4D+DLwLOBG4A32r67\nXzFOpEP8x1GN+un6vDmwCSAiIuo1sF1AERFRrySAiIiGSgKIiGioJICIiIZKAoiIaKgkgIiIhkoC\niIEi6d1lKuTPd1g3T9LiCfY9rmX5KWVq6/skfaZtuxeVKUeul/TpDscZKvud0lb+HEk/KNNNXy3p\nsHHiOF3Sz8p2P6h7WmdJo5J2L8sXSNq8zvpi3ZEEEIPmncBrbL+lw7ojgZPaCyX9o6T9ga0lfbrc\nUPUQ8EHgfR2OcxJwqO0dqe7c3q/lWC8A/gXYE9hc0rEt+90G7GV7N6qZXw8vM5C2M/C+st1RwL+v\n9VNPTevNPGdRTcscsVZJADEwJP0b8FzgG5Le07ZuY6qT7/fb97P9d8BrgYOBz9q+wvaDtv8H+E3b\ncbYBNrf9vVJ0BmXKX0nbUt2J+wbb1wB/Cuys8jhT24+03Nk6h2r64wfH+zjlvxcDO5Tjv7dlwsPD\nStnctgd6vG+sJVN+2Z8g6buSflzu1KZMt3BWaSmdU2IZq28Zgz8PfwyIvk4GF9HK9l9JWgAMlemF\nW+0G/LjTfpI+DHyd6oT8N5JOtb187LBtm2/LmhP03VrKsH0r1YNwxuJZRZVUWuvajmqK3R2ofuW3\nx9nu9cDy0kXzNqqWw3rAdyVdCLRPM9A6A6WB9W3vWaYYOQ6YT9VKut/270iaRzXtgkvMKyRtLelJ\nth9YS2zRcGkBxGzxHOD2Tits/73tZcCvbB/WcvKfdrZvsb0L8DzgPZJ26LCZgI9Juhx4B3Ao8Arg\nHNsry4n5nFLWaS6W1umszyn/vYxqqmXKfl8o8VxJNXdTqxWsOSttREdJADFbmLXM82/7H7o4zq2s\n+ZSk7ZjEk6ts307VvfPCTqsp1wBsLyjdSe3xq5Q9ypr/H85hzaQw1oX1GGu22Cf6LsaOHTGhJICY\nLW4EnjmJ/dY4UZYT972S9izTFr+FLqf8lbStpDlleStgb57467tjvVTJ4g9L//2TqK47XEw13/zT\ny6iljYHXdRHKRVTXJ8YuWu/Stv4ZzLLnUER/5BpADJrxfrleAezcy4Ek3QBsDmwk6Q+B+bZ/BLwL\nOJ3q1/bXepju+vnAIklj/fT/ZPu6cbZd43PYvlzS6cDYxedTbF9R4vxQKb+ViefQHzvmScBpkq6h\nem7zpWMbSHomVVdY+v9jrTIddMwa5QR6ku3Z9JziGSXpL4An2f5kv2OJwZcuoJhNPg78Vb+DGHBv\nAk5Z61YRpAUQEdFYaQFERDRUEkBEREMlAURENFQSQEREQyUBREQ0VBJARERD/R/iqzPZZZ4BhQAA\nAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0xda65b70>"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex15-pg77"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.15\n",
      "print('Example 3.15\\n\\n');\n",
      "print('Page No. 77\\n\\n');\n",
      "import numpy\n",
      "## given\n",
      "i_t = numpy.array([20, 40 ,60, 80, 100]);## Insulation thickness in mm\n",
      "f_c = numpy.array([2.2, 3.5, 4.8, 6.1 ,7.4]);## Fixed costs in (10^3 Pound / year)\n",
      "h_c = numpy.array([10.2, 6.5, 5.2, 4.6, 4.2]);## Heat costs in (10^3 Pound / year)\n",
      "t_c = numpy.array([12.4, 10 ,10 ,10.7 ,11.6]);## Total costs in (10^3 Pound / year)\n",
      "\n",
      "##(a) Graphical solution\n",
      "##Refer figure 3.8\n",
      "C_T = 9750.;## Minimum total cost in Pound\n",
      "t = 47.;## Corresponding thickness of insulation in mm\n",
      "print'%s %.2f %s'%('The most economic thickness of insulation is ',t,' mm \\n')\n",
      "\n",
      "##(b) Numerical solution\n",
      "## The cost due to heat losses,C1, and the fixed costs,C2, vary according to the equations;-\n",
      "## C1 = (a/x) + b     and    C2 = (c*x) + d\n",
      "## Substituting the values of C1 and C2 together with the corresponding insulation thickness values , the following equations are obtained :-\n",
      "## C1 = (150*10^3/x) + 2.7*10^3    and    C2 = (65*x) + 0.9*10^3\n",
      "##And to obtain the total costs\n",
      "##CT = C1 + C2 = (150*10^3/x) + (65*x) + 3.6*10^3\n",
      "## Differentiate to optimise, and put dCT/dx equal to zero\n",
      "##dCT/dx =-((150*10^3)/x^2) + 65 = 0\n",
      "\n",
      "##Let y = dCT/dx\n",
      "\n",
      "from sympy import Eq, Symbol, solve\n",
      "\n",
      "x = Symbol('x')\n",
      "eqn= Eq(-((150*10**3)/x**2), 48.0);\n",
      "print(eqn)\n",
      "x=48.3\n",
      "print'%s %.2f %s'%('The optimum thickness of insulation is ',x,'mm \\n')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.15\n",
        "\n",
        "\n",
        "Page No. 77\n",
        "\n",
        "\n",
        "The most economic thickness of insulation is  47.00  mm \n",
        "\n",
        "-150000/x**2 == 48.0\n",
        "The optimum thickness of insulation is  48.30 mm \n",
        "\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex16-pg79"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.16\n",
      "print('Example 3.16\\n\\n');\n",
      "print('Page No. 79\\n\\n');\n",
      "import numpy\n",
      "## given\n",
      "tb = numpy.array([36*10**3, 72*10**3, 144*10**3, 216*10**3]); ##operating time in s\n",
      "U = numpy.array([971 ,863 ,727 ,636]);## Mean overall heat transfer rate in W/m^2-K\n",
      "A = 50.;## area in m^2\n",
      "dT = 25.;## temperature difference in degree celcius\n",
      "ts = 54.*10**3;## Time in sec (h converted to sec)\n",
      "##As Q = U*A*dT\n",
      "z0=numpy.linspace(1,1,4)\n",
      "leng=len(z0)\n",
      "Q=numpy.zeros(leng)\n",
      "Q_a=numpy.zeros(leng)\n",
      "for i in range (1,4):\n",
      "    Q[i] = (U[i]*A*dT)/10**6;\n",
      "    Q_a[i] = ((tb[i]*Q[i]*10**6)/(tb[i] + ts))/10**6;\n",
      "    print'%s %.2f %s'%('the average heat transfer rate is ',Q_a[i],' *10^6 W \\n')\n",
      "\n",
      "##Refer figure 3.9\n",
      "print('\\n')\n",
      "Q_max = 0.67*10**6;## Maximum value of Q in W\n",
      "T_opt = 33.;## Time in h\n",
      "print'%s %.2f %s'%('The maximum value of Q obtained is ',Q_max,' W \\n')\n",
      "print'%s %.2f %s'%('The most econnomic opertaing time for the heat exchanger to run  is',T_opt,' h ')\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.16\n",
        "\n",
        "\n",
        "Page No. 79\n",
        "\n",
        "\n",
        "the average heat transfer rate is  0.62  *10^6 W \n",
        "\n",
        "the average heat transfer rate is  0.66  *10^6 W \n",
        "\n",
        "the average heat transfer rate is  0.64  *10^6 W \n",
        "\n",
        "\n",
        "\n",
        "The maximum value of Q obtained is  670000.00  W \n",
        "\n",
        "The most econnomic opertaing time for the heat exchanger to run  is 33.00  h \n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex17-pg80"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "## Example 3.17\n",
      "print('Example 3.17\\n\\n');\n",
      "print('Page No. 80\\n\\n');\n",
      "\n",
      "## given\n",
      "## C_T = 7*x + (40000/(x*y)) + 6*y + 10\n",
      "##Differentiating C_T with respect to x and y:-\n",
      "##dC_T/dx = 7 - (40000/(x^2*y))\n",
      "##dC_T/dy = - (40000/(x*y^2)) + 6\n",
      "\n",
      "##For optimum conditions :- dC_T/dx = dC_T/dy = 0\n",
      "##dC_T/dx = 0   => 7 - (40000/(x^2*y)) = 0\n",
      "##=> y = 40000/(7*x^2).......(1)\n",
      "##dC_T/dy = 0    =>- (40000/(y^2*x)) +6 = 0\n",
      "##=> y = (40000/(6*x))^0.5.......(2)\n",
      "\n",
      "##From equation (1) and (2) \n",
      "##=> 40000/(7*x^2) - (40000/(6*x))^0.5 = 0\n",
      "from sympy import Eq, Symbol, solve\n",
      "\n",
      "x = Symbol('x')\n",
      "eqn= Eq( 40000./(7*x**2) - (40000./(6.*x))**0.5,20);\n",
      "\n",
      "\n",
      "x=16.982634  \n",
      "##from equation (1)\n",
      "y = 40000./(7*x**2);\n",
      "\n",
      "##a = d^2C_T/dx^2 = 80000/(x^3*y)\n",
      "##b = d^2C_T/dy^2 = 80000/(x*y^3)\n",
      "a = 80000./(x**3*y);\n",
      "b = 80000./(x*y**3);\n",
      "if a > 0:\n",
      "\tif b>0:\n",
      "           C= 7.*x + (40000./(x*y)) + 6.*y + 10.;## in Pound\n",
      "##The optimum conditions must occur at a point of minimum cost- C_T_m\n",
      "print'%s %.2f %s'%('The minimum cost is ',C,' Pound')\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 3.17\n",
        "\n",
        "\n",
        "Page No. 80\n",
        "\n",
        "\n",
        "The minimum cost is  366.64  Pound\n"
       ]
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}