1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
|
{
"metadata": {
"name": "",
"signature": "sha256:210f77b61090b12d2cbd5d04df3d1b526a4fda08984b858283fabc1e0b3af1d2"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter11-Heat recovery"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg308"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 11.1\n",
"print('Example 11.1\\n\\n');\n",
"print('Page No. 308\\n\\n');\n",
"\n",
"##given\n",
"V = 205.;## Flow rate in m^3\n",
"T1 = 74.;## in degree celcius\n",
"T2 = 10.;## in degree celcius\n",
"m = 1000.;## Steam in kg\n",
"p = 950.;## Density of steam in kg/m^3\n",
"C = 85.;## Cost in Pound per m^3\n",
"C_V = 43.3*10**6;## Calorific value in J/kg\n",
"Cp = 4.18*10**3;## heat capacity of water J/kg-K\n",
"h = 2.33*10**6;## Heat of the steam in J/kg\n",
"n = 0.65;## Average bolier efficiency\n",
"\n",
"S_cost = ((m*h*C)/(C_V*p*n));## Steam cost in Pound per 1000 kg\n",
"E_save = V*m*(T1 - T2)*Cp;## Energy saving in J per day\n",
"S_save = E_save/h;## in kg per day\n",
"print'%s %.2f %s'%('the steam saving is ',S_save,' kg per day \\n')\n",
"G_save = (S_cost*S_save)/m;## Pound per day\n",
"print'%s %.2f %s'%('The gross saving is ',G_save,' Pound per day per year')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 11.1\n",
"\n",
"\n",
"Page No. 308\n",
"\n",
"\n",
"the steam saving is 23537.17 kg per day \n",
"\n",
"The gross saving is 174.34 Pound per day per year\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg313"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import numpy\n",
"#import tabulate\n",
"\n",
"## Example 11.2\n",
"print('Example 11.2\\n\\n');\n",
"print('Page No. 313\\n\\n');\n",
"\n",
"##given\n",
"p1 = 10.;##heat-sensitive liquor percen\n",
"p2 = 50.;##heat-sensitive liquor percent\n",
"m = 0.28;## mass rate in kg/s\n",
"t = 150.;## time in h per week\n",
"\n",
"## This question does not contain any calculation part in it.\n",
"I = ['8250', '1150', '14850', '16500'];##Installation cost in Pound\n",
"A = ['69300' ,'36800' ,'23600' ,'24600'];## Annual steam cost in Pound\n",
"A_S =['0' ,'32500' ,'45700' ,'44700'];## Annual savings in Pound\n",
"for column in zip(I, A, A_S):\n",
"\tprint ' '.join(column)\n",
"#from tabulate import tabulate\n",
"#print tabulate([['single effect', I[0], A[0],[A_S[0]]], ['double effect', I[1], A[1],[A_S[1]]] ,['double effect+vapour compression',I[2], A[2],[A_S[2]]] ,['Triple effect',I[3], A[3],[A_S[3]]]], headers=['Installation cost', 'Annual steam cost','Annual saving'])\n",
"\n",
"\n",
"\n",
"#print'%s %.2f %s'%(' The results enable the return on investment to be assessed by one of the standard economic procedures and the final selsction made.')\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 11.2\n",
"\n",
"\n",
"Page No. 313\n",
"\n",
"\n",
"8250 69300 0\n",
"1150 36800 32500\n",
"14850 23600 45700\n",
"16500 24600 44700\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg314"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 11.3\n",
"print('Example 11.3\\n\\n');\n",
"print('Page No. 314\\n\\n');\n",
"\n",
"##given\n",
"f = 1.;## feed of sodium hydroxide in kg\n",
"v = 0.5;## produed vapour in kg\n",
"A = 30.;## in m^2\n",
"T1 = 95.;## Temperature of boiling solution in deg C\n",
"U = 3.*10**3;## heat transfer coefficent in W/m^2-K\n",
"m = 1.;## feed rate in kg/s\n",
"Tf = 70.;## Feed temperature in deg C\n",
"h_f = 260.*10**3.;## Enthalpy of feed in J/kg\n",
"h_b = 355.*10**3.;## Enthalpy of boiling solution in J/kg\n",
"h_v = 2.67*10**6.;## Enthalpy of vapour in J/kg\n",
"P1 = 0.6;## Pressure in vapour space in bar\n",
"\n",
"Q = (v*h_b) + (v*h_v) -(f*h_f);## in W\n",
"print'%s %.2f %s'%('The total energy requirement is ',Q,' W \\n')\n",
"\n",
"## As Q = A*U*dT\n",
"dT = Q/(U*A);## in degree celcius\n",
"T2 = dT + T1;## in degree celcius\n",
"##The temperature of the heating steam T2 corresponds to a pressure of 1.4 bar. Dry saturated steam at 1.4 bar has a total enthalpy of 2.69*10^6 J/kg\n",
"##Assuming an isentropic compression of the vapour from 0.6 bar to 1.4 bar, the outlet enthalpy is 2.84*10^6 J/kg\n",
"\n",
"## from steam table\n",
"P2 = 1.4## pressure in bar\n",
"h_s = 2.69*10**6;## enthalpy of dry saturated steam in J/kg\n",
"h_v2 = 2.84*10**6 ;## the outlet enthalpy of vapour in J/kg\n",
"\n",
"W = v*(h_v2 - h_s);## Work in W\n",
"T_E = W + 60.*10**3;## in W\n",
"print'%s %.2f %s'%('The total energy consumption is ',T_E,' W')\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 11.3\n",
"\n",
"\n",
"Page No. 314\n",
"\n",
"\n",
"The total energy requirement is 1252500.00 W \n",
"\n",
"The total energy consumption is 135000.00 W\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg316"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 11.4\n",
"print('Example 11.4\\n\\n');\n",
"print('Page No. 316\\n\\n');\n",
"\n",
"##given\n",
"Cm_S = 10000.;## Company saving in Pound per annum\n",
"S = Cm_S/12.;## Saving in Pound per months\n",
"Ca_C = 10500.;## Capital cost in Pound\n",
"Ins_C = 7500.;## Installation cost in Pound\n",
"T_C = Ca_C + Ins_C;## Total cost in Pound\n",
"T = T_C/S;## pay-back time in months\n",
"print'%s %.2f %s'%('The pay-back period was ',T,' months\\n')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 11.4\n",
"\n",
"\n",
"Page No. 316\n",
"\n",
"\n",
"The pay-back period was 21.60 months\n",
"\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg318"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 11.5\n",
"print('Example 11.5\\n\\n');\n",
"print('Page No. 318\\n\\n');\n",
"\n",
"##From the heat balance:- \n",
"##Heat recovered in the boiler = heat gained by the air = heat lost by the flue gases\n",
"##=> Q = m_a*Cp_a*dT_a = m_f*Cp_f*dT_f\n",
"## As mass flow rate of air/flue gas is not given in the book\n",
"##Assuming m_a = m_f = 2.273 kg/s & Cp_a = 1*10^3 J/kg-K\n",
"\n",
"m_a = 2.273;## in kg/s\n",
"m_f = m_a;## in kg/s\n",
"Cp_a = 1.*10**3;## Specific heat capacity of air in J/kg-K\n",
"T1_a = 20.;## Entrance temperature of air in degree celcius\n",
"T2_a = 130.;## Exit temperature of air in degree celcius\n",
"dT_a = T2_a - T1_a;##in K\n",
"T1_f = 260.;## Entrance temperature of flue gases in degree celcius\n",
"T2_f = 155.;## Entrance temperature of flue gases in degree celcius\n",
"dT_f = T1_f - T2_f;##in K\n",
"\n",
"##From heat balance:- Q = m_a*Cp_a*dT_a = m_f*Cp_f*dT_f\n",
"Cp_f = ((m_a*Cp_a*dT_a)/(m_f*dT_f));## in J/kg-K\n",
"Q = m_f*Cp_f*dT_f;## in W\n",
"print'%s %.2e %s'%('The total heat recovered at full load if ',Q,' W')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 11.5\n",
"\n",
"\n",
"Page No. 318\n",
"\n",
"\n",
"The total heat recovered at full load if 2.50e+05 W\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg320"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 11.6\n",
"print('Example 11.6\\n\\n');\n",
"print('Page No. 320\\n\\n');\n",
"\n",
"C = 10000.;## Installation cost of the pump in Pound\n",
"S = 3500.;## Saving in Pound per annum \n",
"T = C/S;## in year\n",
"print'%s %.2f %s'%('The pay back time is ',T,' year\\n\\n')\n",
"\n",
"## This question further does not contain any calculation part in it.\n",
"print('In a heat-pump system the work input to drive the compressor,W, produces a heat absorption capacity,Q2,\\nand to balance the energy flow, a quantity of heat, Q1, must be dissipated.\\nThus the energy equation is\\n -> Q1 = W + Q2\\nand the coeffient of performance is \\nC.O.P. = Q1/W = Q1/(Q1 - Q2)\\n Consequently the C.O.P. is always greater than unity.\\nThe maximum theoretical value of the C.O.P. is that predicted by the Carnot in chapter 2,namely :\\n -> (C.O.P.)max = T1/(T1 - T2)')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 11.6\n",
"\n",
"\n",
"Page No. 320\n",
"\n",
"\n",
"The pay back time is 2.86 year\n",
"\n",
"\n",
"In a heat-pump system the work input to drive the compressor,W, produces a heat absorption capacity,Q2,\n",
"and to balance the energy flow, a quantity of heat, Q1, must be dissipated.\n",
"Thus the energy equation is\n",
" -> Q1 = W + Q2\n",
"and the coeffient of performance is \n",
"C.O.P. = Q1/W = Q1/(Q1 - Q2)\n",
" Consequently the C.O.P. is always greater than unity.\n",
"The maximum theoretical value of the C.O.P. is that predicted by the Carnot in chapter 2,namely :\n",
" -> (C.O.P.)max = T1/(T1 - T2)\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg320"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 11.7\n",
"print('Example 11.7\\n\\n');\n",
"print('Page No. 320\\n\\n');\n",
"\n",
"##given\n",
"T1 = 40.;## in degree \n",
"T2 = 0.;## in degree celcius\n",
"##As from carnot cycle, C.O.P = (T1/(T1 - T2)), where temperature are in degree celcius\n",
"C_O_P1 = ((T1+273.)/((T1+273.) - (T2+273.)));\n",
"print'%s %.2f %s'%('C.O.P. is ',C_O_P1,' \\n')\n",
"\n",
"## A secondary fluid as hot water at 60 deg C is used\n",
"T3 = 60;## Temperature of hot water in degree celcius\n",
"C_O_P2 = ((T3+273.)/((T3+273.) - (T2+273.)));\n",
"print'%s %.2f %s'%('C.O.P. when secondary fluid is used is ',C_O_P2,' \\n')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 11.7\n",
"\n",
"\n",
"Page No. 320\n",
"\n",
"\n",
"C.O.P. is 7.83 \n",
"\n",
"C.O.P. when secondary fluid is used is 5.55 \n",
"\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg323"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 11.8\n",
"print('Example 11.8\\n\\n');\n",
"print('Page No. 323\\n\\n');\n",
"\n",
"## This question does not contain any calculation part in it.\n",
"print('No calculation is required as not in shown in book')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 11.8\n",
"\n",
"\n",
"Page No. 323\n",
"\n",
"\n",
"No calculation is required as not in shown in book\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg324"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 11.9\n",
"print('Example 11.9\\n\\n');\n",
"print('Page No. 324\\n\\n');\n",
"\n",
"##given\n",
"T1 = 273.;## Measured temperature In degree celcius\n",
"P = 1.;## Measured pressure in bar\n",
"T2 = 290.;## initial temperature In degree celcius\n",
"T3 = 1000.;## Final temperature In degree celcius\n",
"T4 = 1150.;## Entering tempearture In degree celcius\n",
"v1 = 7.;## in m^3/s\n",
"v2 = 8.;## in m^s\n",
"M = 22.7;## in kmol/m^3\n",
"d = 0.1;## Diameter in m\n",
"A = 0.01;## Surface area per regenerator channel in m^2\n",
"u = 1.;## maximum velocity in m/s\n",
"Cp_1 = 34.*10**3;## Heat capacity at T4 temperature in J/kmol-K\n",
"Cp_2 = 32.*10**3;## Heat capacity at outlet temperature in J/kmol-K\n",
"Cp_m = 30.*10**3;## Heat capacity at mean temperature in J/kmol-K\n",
"\n",
"m_c = v1/M;## Molal air flow rate in kmol/s\n",
"H_c1 = Cp_m*(T3 - T1);## Enthalpy of air at 1000K in J/mol\n",
"H_c2 = Cp_m*(T2 - T1);## Enthalpy of air at 290 in J/mol\n",
"Q = (m_c*(H_c1 - H_c2))/10**6;## in 10^6 W\n",
"print'%s %.2f %s'%('The heat transfer, Q is ',Q,' *10^6 W \\n')\n",
"\n",
"m_F = v2/M;## Molal flow rate of flue gas in kmol/s\n",
"dH = (Q/m_F)*10**6;## enthaply chnage of the flue gas in J/kmol\n",
"H_F1 = Cp_1*(T4 - T1);## Enthalpy of the flue gas at 1150 K in J/kmol\n",
"H_F2 =H_F1 - dH;## Enthalpy at the exit temperature in J/kmol\n",
"T_F2 = (H_F2/Cp_2) + T1;## in K\n",
"print'%s %.2f %s'%('The exit tempearture of the flue gas is ',T_F2,' K \\n')\n",
"S_R = v2/u;##cross sectional area of the regenerator in m^2\n",
"N = S_R/A;\n",
"print'%s %.2f %s'%('The number of channels required is ',N,'\\n')\n",
"print('Consequently for this regenerator a square layout could be achieved with 40 channels arranged horizontally and 20 channels vertically.')\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 11.9\n",
"\n",
"\n",
"Page No. 324\n",
"\n",
"\n",
"The heat transfer, Q is 6.57 *10^6 W \n",
"\n",
"The exit tempearture of the flue gas is 622.39 K \n",
"\n",
"The number of channels required is 800.00 \n",
"\n",
"Consequently for this regenerator a square layout could be achieved with 40 channels arranged horizontally and 20 channels vertically.\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg324"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"## Example 11.10\n",
"print('Example 11.10\\n\\n');\n",
"print('Page No. 324\\n\\n');\n",
"\n",
"##given\n",
"Pr = 100.;## Production in tonnes per day\n",
"p = 10.2;## percentage of sulphur dioxide\n",
"T1 = 900.;##Burner temperature in degree celcius\n",
"T2 = 425.;##Required temperature in degree celcius\n",
"P = 10.;## Dry saturated steam pressure in bar\n",
"T = 120.;## Dry saturated steam temperature in degree celcius\n",
"##At the given Temperature =T and Pressure P, the required heat Qr to geberate steam from feed water is calculated from the steam table.\n",
"Qr = 2.27*10**6;## in J/kg\n",
"\n",
"Sp_1 = 1.14*10**3;## Specific heat of the inlet gas in J/kmol-K\n",
"Sp_2 = 1.03*10**3;## Specific heat of the outlet gas in J/kmol-K\n",
"pr_rate = 1.2;## production rate in kmol/s\n",
"\n",
"##In the calculation part, the book has taken percentage of sulphur dioxide p = 10.6 in the place of p = 10.2, so there exists a deviation in answer\n",
"Q_in = ((Pr*pr_rate)/p) * Sp_1 * T1;## Heat content of the inlet gas in J/s\n",
"Q_out = ((Pr*pr_rate)/p) * Sp_2 * T2;## Heat content of the outlet gas in J/s\n",
"Qa = Q_in - Q_out;## Heat available for steam\n",
"S = Qa/Qr;## in kg/s\n",
"print'%s %.2f %s'%('The steam production is ',S,' kg/s')##Deviation in answer is due to some wrong value substition as discussed above\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 11.10\n",
"\n",
"\n",
"Page No. 324\n",
"\n",
"\n",
"The steam production is 3.05 kg/s\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|