summaryrefslogtreecommitdiff
path: root/Elements_of_thermal_technology_by_John_H._Seely/Units.ipynb
blob: f757dc50e09d3103913aee16d004369ab46bd88d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 2: Units and Dimensions"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 2.1a"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "I in SI system (Kg m^2) =  1.00\n",
      "press enter key to exit\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "''"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#According to newton's second law for angular motion, torque equals \n",
    "#the product of the mass moment of inertia and angular acceleration \n",
    "#By means of dimensonal symbolism determine the units of I in SI units\n",
    "#initialisation of variables\n",
    "F= 1\t\t\t\t\t#N\n",
    "L= 1\t\t\t\t\t#m\n",
    "T= 1\t\t\t\t\t#s\n",
    "I= 1\t\t\t\t\t#N m s^2\n",
    "N= 1\t\t\t\t\t#Kg m s^-2\n",
    "#CALCULATIONS\n",
    "I= F*L*T*T \t\t\t\t#Kg m^2\n",
    "#RESULTS\n",
    "print '%s %.2f' % ('I in SI system (Kg m^2) = ',I)\n",
    "raw_input('press enter key to exit')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 2.1b"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " I in British Gravitational System (slug ft^2) =  1.00\n"
     ]
    }
   ],
   "source": [
    "#According to newton's second law for angular motion, torque equals \n",
    "#the product of the mass moment of inertia and angular acceleration \n",
    "#By means of dimensonal symbolism determine the units of I in British units\n",
    "#initialisation of variables\n",
    "F= 1\t\t\t\t\t#lbf\n",
    "L= 1\t\t\t\t\t#ft\n",
    "T= 1\t\t\t\t\t#s\n",
    "I= 1\t\t\t\t\t#lbf ft s^2\n",
    "lbf= 1\t\t\t\t\t#slug ft s^-2\n",
    "#CALCULATIONS\n",
    "I= F*L*T*T \t\t\t\t#slug ft^2\n",
    "#RESULTS\n",
    "print '%s %.2f' % (' I in British Gravitational System (slug ft^2) = ',I)\n",
    "raw_input('press enter key to exit')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 2.2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "gc (lbm ft/poundal^2) =  1.00\n",
      "press enter key to exit\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "''"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#Determine the gravitational constant gc for the british absoulte system.\n",
    "#initialisation of variables\n",
    "F= 1 \t\t\t\t\t#Pouunda\n",
    "m= 1 \t\t\t\t\t#lbm\n",
    "g= 1 \t\t\t\t\t#fts^-2\n",
    "#CALCULATIONS\n",
    "gc= m*g/F \t\t\t\t#Gravitation in British Units\n",
    "#RESULTS\n",
    "print '%s %.2f' %('gc (lbm ft/poundal^2) = ',gc)\n",
    "raw_input('press enter key to exit')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 2.3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Pa (poundal/ft^2) =  684016.87\n",
      "press enter key to exit\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "''"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#If a mercury barometer shows a height of 76 cmHg, express the atmospheric\n",
    "#pressure in force units of the british absoulte system.\n",
    "#initialisation of variables\n",
    "h= 76. \t\t\t\t\t#cmhg\n",
    "g= 32.2 \t\t\t\t#ft/s^2\n",
    "h= 76.0 \t\t\t\t#cmHg\n",
    "Dhg= 847. \t\t\t\t#lbm/ft^3\n",
    "#CALCULATIONS\n",
    "Pa= Dhg*g*h*0.33\t\t#P in lbm/ft S^2\n",
    "Pa1= Pa/1. \t\t\t\t#P in poundal/ft^2\n",
    "#RESULTS\n",
    "print '%s %.2f' % ('Pa (poundal/ft^2) = ',Pa1)\n",
    "raw_input('press enter key to exit')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}