1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 11: Conduction Heat Transfer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 11.1"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Outside wall temperature (F) = 23.08\n",
"press enter key to exit\n"
]
},
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#THe inside surface of a plane wall is exposed to air at 76 F and the outside \n",
"#surface to air at 21 F. The inside surface conductance is 1.5., and the outside\n",
"#is 6.5. If a thermocouple indicates that the inside wall temperature is 67 F\n",
"#what is the outside wall temperature.?\n",
"#initialisation of variables\n",
"T= 76 \t\t\t\t\t#F\n",
"T1= 21 \t\t\t\t\t#F\n",
"Tw= 67 \t\t\t\t\t#W\n",
"h= 1.5 \t\t\t\t\t#Btu/hr ft^2 F\n",
"A= 1. \t\t\t\t\t#ft^2 \n",
"h0= 6.5 \t\t\t\t#Btu/hr\n",
"#CALCULATIONS\n",
"q= h*A*(T-Tw)\t\t\t#Heat flow\n",
"t= (q/(h0*A))+T1 \t\t#Outside wall temperature\n",
"#results\n",
"print '%s %.2f' % ('Outside wall temperature (F) = ',t)\n",
"raw_input('press enter key to exit')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 11.2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Thermal transmittance (Btu/hr ft^2 F) = 0.62\n",
" \n",
" Heat transfer rate (Btu/hr) = 31.25\n",
"press enter key to exit\n"
]
},
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#The inside and outside surface conductances are 2.0 and 10.0 Btu/hr ft^2 F\n",
"#respectively and the thermal conductivity of the wall is 0.5 units. Determine\n",
"#(a)the thermal transmittance and (b) the hear transfer rate for 1 ft^2 of wall\n",
"#surfaces\n",
"#initialisation of variables\n",
"hi= 2. \t\t\t\t\t\t\t\t\t#Btu/hr ft^2 F\n",
"l= 6. \t\t\t\t\t\t\t\t\t#in\n",
"k= 0.5 \t\t\t\t\t\t\t\t\t#Btu/hr ft F\n",
"h0= 10. \t\t\t\t\t\t\t\t#Btu/hr ft^2 F\n",
"ti= 70. \t\t\t\t\t\t\t\t#F\n",
"t0= 20.\t\t\t\t\t\t\t\t\t#F\n",
"A= 1. \t\t\t\t\t\t\t\t\t#ft^2\n",
"#CALCULATIONS\n",
"U= 1/((1/hi)+((l*0.5)/(6*k))+(1/h0))\t#Thermal transmittance \n",
"q= U*A*(ti-t0)\t\t\t\t\t\t\t#Heat transfer rate\n",
"#RESULTS\n",
"print '%s %.2f' % ('Thermal transmittance (Btu/hr ft^2 F) = ',U)\n",
"print '%s %.2f' % (' \\n Heat transfer rate (Btu/hr) = ',q)\n",
"raw_input('press enter key to exit')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 11.3"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Heat loss (Btu/hr) = 32.00\n",
" \n",
" Temperature at the interface of the steel and the insulation (F) = 299.98\n",
"press enter key to exit\n"
]
},
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#A composite wall is made up of a 1/4 in. steel plate(k=31.4) and 3 in insulation\n",
"#(k=0.04). If the outside of the steel surface is 300 F, and the outside of the \n",
"#insulation is 100 F, determine (a) the heat loss and (b) the temperature at\n",
"#the interface of the steel amd the insulation\n",
"#initialisation of variables\n",
"Ti= 300. \t\t\t\t\t\t\t#F\n",
"T0= 100. \t\t\t\t\t\t\t#F\n",
"l= 0.25 \t\t\t\t\t\t\t#in\n",
"li= 3. \t\t\t\t\t\t\t\t#in\n",
"A= 12. \t\t\t\t\t\t\t\t#in/ft\n",
"ks= 31.4 \t\t\t\t\t\t\t#Btu/hr ft F\n",
"ki= 0.04 \t\t\t\t\t\t\t#Btu/hr ft F\n",
"#CALCULATIONS\n",
"q= (Ti-T0)/((l/(A*ks))+(li/(A*ki))) #Heat loss\n",
"t= Ti-((q*l/12.)/ks) \t\t\t\t#Temperature\n",
"#RESULTS\n",
"print '%s %.2f' % ('Heat loss (Btu/hr) = ',q)\n",
"print '%s %.2f' % (' \\n Temperature at the interface of the steel and the insulation (F) = ',t)\n",
"raw_input('press enter key to exit')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 11.4"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Heat loss (W) = 347.46\n",
"press enter key to exit\n"
]
},
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#A steel pipe (k=6.4) has an OD of 8.89 cm and an ID of 7.8 cm, and is covered\n",
"#with 1.3 cm asbestos (k=0.19). The pipe transports a fluid at 149 C and has\n",
"#an inner surface conductance of 227. Outside temp=27. Outside conductance=23\n",
"#what os the heat loss of 1m of pipe?\n",
"import math\n",
"#initialisation of variables\n",
"ti= 149. \t\t\t\t\t\t\t\t#C\n",
"t0= 27. \t\t\t\t\t\t\t\t#C\n",
"D0= 0.1149 \t\t\t\t\t\t\t\t#m\n",
"l= 1. \t\t\t\t\t\t\t\t\t#m\n",
"h0= 23. \t\t\t\t\t\t\t\t#W/m^2 C\n",
"hi= 227. \t\t\t\t\t\t\t\t#W/m^2 C\n",
"k= 0.19 \t\t\t\t\t\t\t\t#W/m C\n",
"Di= 0.0889 \t\t\t\t\t\t\t\t#cm\n",
"#CALCULATIONS\n",
"D1= D0*100 \n",
"D2= Di*100 \n",
"R0=(1/(D0*math.pi*l*h0))\t\t\t\t#Resistance\n",
"Rins=(math.log(D1/D2)/(2*math.pi*k*l))\t#Resistance\n",
"Ri=1/(Di*math.pi*l*hi) \t\t\t\t\t#Resistance Inlet\n",
"q= (ti-t0)/(R0+Rins+Ri) \t\t\t\t#Total heat\n",
"#RESULTS\n",
"print '%s %.2f' % ('Heat loss (W) = ',q)\n",
"raw_input('press enter key to exit')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 11.5"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Power consumption (W) = 970.90\n",
"press enter key to exit\n"
]
},
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#The working chamber of an electrically heated furnace is a cube 0.2 m on each\n",
"#side and the walls are 0.1 m thick. Interior wall temperatures are to be \n",
"#maintained at 1100 c while the outside wall temperatures are at 150C. If the\n",
"#thermal conductivity of the furnace material is 0.35, estimate the power consumption.\n",
"import math\n",
"#initialisation of variables\n",
"l= 0.2 \t\t\t\t\t\t\t\t\t#m\n",
"l1= 0.5\t\t\t\t\t\t\t\t \t#m\n",
"k= 0.35 \t\t\t\t\t\t\t\t#W/m C\n",
"t= 0.15 \t\t\t\t\t\t\t\t#m\n",
"T1= 1100 \t\t\t\t\t\t\t\t#C\n",
"T2= 150 \t\t\t\t\t\t\t\t#C\n",
"#CALCULATIONS\n",
"Ai= 6*l*l \t\t\t\t\t\t\t\t#Inner area\n",
"Ao= 6*l1*l1 \t\t\t\t\t\t\t#outer area\n",
"q= 0.73*k*math.sqrt(Ai*Ao)*(T1-T2)/t \t#Power consumption\n",
"#RESULTS\n",
"print '%s %.2f' % ('Power consumption (W) = ',q)\n",
"raw_input('press enter key to exit')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 11.6"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"heat loss will increase if the insulation is added\n",
"press enter key to exit\n"
]
},
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#A copper tube, 0.6 cm OD, carries hot water between two tanks, the outside\n",
"#surface conductance is 12. If it is important to minimize the heat loss\n",
"#should the tube be covered with an insulation whose k=0.19\n",
"#initialisation of variables\n",
"h= 12 \t\t\t\t#W/m^2 C\n",
"k= 0.19 \t\t\t#W/m C\n",
"d= 0.6 \t\t\t\t#m\n",
"#CALCULATIONS\n",
"r= k/h \t\t\t\t#Critical radius\n",
"d1=d/2. \t\t\t#Radius of tube\n",
"if (r<d1):\n",
" print('heat loss will increase if the insulation is added');\n",
"else:\n",
" print('heat loss will increase if the insulation is added');\n",
"\n",
"raw_input('press enter key to exit')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 11.7"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time needed for the casting to be heated to 510 C (hr) = 0.63\n",
"press enter key to exit\n"
]
},
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#A small casting initially at 16C is placed in a furnace at 1200C\n",
"#The ratio of volume to surface area is 0.15 m and the outer k=85\n",
"#k for casting is 225 and the thermal diffusivity is 0.34. how much time is \n",
"#needed for the casting to be heated to 510C?\n",
"import math\n",
"#initialisation of variables\n",
"h= 85 \t\t\t\t\t\t\t\t\t#W/m^2 C\n",
"s= 0.15 \t\t\t\t\t\t\t\t#m\n",
"K= 225. \t\t\t\t\t\t\t\t#W/m C\n",
"t= 510. \t\t\t\t\t\t\t\t#C\n",
"t1= 1200. \t\t\t\t\t\t\t\t#C\n",
"t0= 16. \t\t\t\t\t\t\t\t#C\n",
"a= 0.34\n",
"#CALCULATIONS\n",
"Bi= h*s/K \t\t\t\t\t\t\t\t#Biot number\n",
"T= K*s*math.log((t0-t1)/(t-t1))/(h*a) \t#Time\n",
"#RESULTS\n",
"print '%s %.2f' % ('Time needed for the casting to be heated to 510 C (hr) = ',T)\n",
"raw_input('press enter key to exit')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|