1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 6 : Rotating electrical machine"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1 : pg 105"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Terminal voltage,(V) = 459.25\n"
]
}
],
"source": [
"#Example 6.1# Terminal voltage \n",
"#calculate the terminal voltage\n",
"#given data :\n",
"Z=440.;# number of lap\n",
"N=900.;# revolutions in rpm\n",
"fi=0.07;#fluxin Wb\n",
"P=4.;# number of pole\n",
"A=4.;#constant\n",
"Ia=50.;# armature current in Amperes\n",
"E=462.;#voltage in V\n",
"#calculations\n",
"E=(P*fi*Z*N)/(60*A);#general voltage in volts\n",
"R=0.002;# resistance in ohm\n",
"C=110.;# conductors\n",
"Re=C*R;#resistance of each path in ohm\n",
"Ra=Re/A;#armature resistance in ohm\n",
"V=E-(Ia*Ra);#terminal voltage in volts\n",
"#results\n",
"print \"Terminal voltage,(V) = \",V"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2 : pg 105"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"emf when machine acts as generator,(V) = 205.0\n",
"emf when machine acts as motor,(V) = 195.0\n"
]
}
],
"source": [
"#Example 6.2# e.m.f \n",
"#calculate the emf in all cases\n",
"#given data :\n",
"V=200.;#voltage\n",
"Ra=0.1;#resistance in ohm\n",
"Ia=50.;#armature current in Amperes\n",
"#calculations\n",
"E=V+(Ia*Ra);#generator voltage in volts\n",
"Eb=V-(Ia*Ra);#motor voltage in volts\n",
"#results\n",
"print \"emf when machine acts as generator,(V) = \",E\n",
"print \"emf when machine acts as motor,(V) = \",Eb\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3 : pg 106"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"speed is,(rpm)= 623.944\n",
"armature torque is, (N-m)= 323.76\n",
"full load motor efficiency is ,(%)= 79.2\n"
]
}
],
"source": [
"#Example 6.3\n",
"#calculate the speed ,torque and efficiency\n",
"v=200.;#voltage in volts\n",
"r=100.;#resistance in ohms\n",
"#calculations\n",
"ish=v/r;#shunt current in amperes\n",
"i=4;#current in amperes\n",
"nla=i-ish;#no load armature current in amperes\n",
"w=8.;#powerin kW\n",
"ifl=(w*10**3)/v;#full load current in amperes\n",
"fla=ifl-ish;#full load armature current in amperes\n",
"r1=0.6;#internal resistance in ohms\n",
"ebo=(v-(ish*r1));#voltage in volts\n",
"eb=(v-(fla*r1));#voltage in volts\n",
"no=700.;#number of rpm\n",
"n=no*(eb/ebo);#number of rpm\n",
"ta=((eb*fla*60)/(2*n));#armature torque in N-m\n",
"nlpi=v*i;#no load power input in watts\n",
"cl=(ish**2*r1);#copper losses in watts\n",
"cl=nlpi-cl;#total copper lossses in Watts\n",
"flacl=(fla**2*r1);#full load armmature copper losses in Watts\n",
"tfll=flacl+cl;#total full load losses in Watts\n",
"flo=(w*10**3)-tfll;#full load output in Watts\n",
"ef=((flo)/(w*10**3))*100;#efficiency\n",
"#results\n",
"print \"speed is,(rpm)=\",round(n,3)\n",
"print \"armature torque is, (N-m)=\",ta\n",
"print \"full load motor efficiency is ,(%)=\",ef\n",
"#armature torque is calculated wrong in the textbook\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4 : pg 108"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The speed of the machine,(rpm) = 1003.51\n"
]
}
],
"source": [
"#Example 6.4# speed\n",
"#calculate the speed of the machine\n",
"#given data :\n",
"fi=0.02# flux in Wb\n",
"P=4.;# number of poles\n",
"A=2.;#constant\n",
"Z=151.*A;#turns\n",
"V=200.;# in volts\n",
"Rsh=50.;#shunt resistance in ohm\n",
"Ra=0.01;# armature resistance in ohm\n",
"Pr=40000.;#power required in Watts\n",
"#calculations\n",
"Il=Pr/V;#load current in amperes\n",
"Ish=V/Rsh;#shunt current in amperes\n",
"Ia=Il+Ish;#armature current in amperes\n",
"E=V+(Ia*Ra);#generated voltage\n",
"N=(60*A*E)/(fi*P*Z);#rpm\n",
"#results\n",
"print \"The speed of the machine,(rpm) = \",round(N,3)\n",
"#answer is wrong in the textbook\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5 : pg 112"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Power consumed is,(W)= 5154.127\n"
]
}
],
"source": [
"#Example 6.5# Power\n",
"#calculate the power consumed\n",
"#given data :\n",
"fp=0.024;# flux per pole\n",
"lf=1.2;# leakage factor\n",
"fi=fp/lf;# in Wb\n",
"Z=756;#turns\n",
"P=4;# number of pole\n",
"N=1000;# in rpm\n",
"A=4;#constant\n",
"#calculations\n",
"E=(fi*Z*N*P)/(60*A);#generated voltage\n",
"il=1/10.;#load current in amperes\n",
"ish=1/100.;#shunt current in amperes\n",
"ra=1;#armature resistance in ohms\n",
"isa=il+ish;#current in amperes\n",
"v=((E)/(1+(ra*isa)));#volts\n",
"r2=10;#ohms\n",
"il=v/r2;#amperes\n",
"pc=il*v;#Watts\n",
"#results\n",
"print \"Power consumed is,(W)=\",round(pc,3)\n",
"#answer is wrong in the textbook\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6 : pg 115"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"part (a)\n",
"emf genereted,(V) = 254.0\n",
"part (b)\n",
"Total copper losses,(kW) = 3.3\n",
"Output of the prime mover,(W) = 51750.0\n",
"part (c)\n",
"Mechanical efficiency,(%) = 98.164\n",
"Electrical efficiency,(%) = 93.504\n",
"Commercial efficiency,(%) = 91.787\n"
]
}
],
"source": [
"#Example 6.6: \n",
"#calculate the e.m.f ,copper losses ,output of the prime mover ,commercial, mechanical and electrical efficiencies\n",
"#given data :\n",
"Il=190;#load current in Amperes\n",
"V=250;# voltage in volts\n",
"Ra=0.02;#armature resistance in ohm\n",
"Rsh=25.;#shunt resistance in ohm\n",
"#calculations and results\n",
"Ish=V/Rsh;#shunt current in amperes\n",
"Ia=Ish+Il;#armature current in amperes\n",
"E=V+(Ia*Ra);#generated voltage\n",
"print \"part (a)\"\n",
"print \"emf genereted,(V) = \",E\n",
"Cl=(Ia**2*Ra);# armeture copper losses\n",
"Sl=Ish*V;# shunt copper losses\n",
"T=(Cl+Sl)*10**-3;#copper losses in k-Watt\n",
"print \"part (b)\"\n",
"print \"Total copper losses,(kW) = \",T\n",
"Eo=V*Il;#output voltage in volts\n",
"I_l=950.;#iron loss in watt\n",
"O=Eo+I_l+(T*10**3);#output in watt\n",
"print \"Output of the prime mover,(W) = \",O\n",
"Ep=O-I_l;# electrical power in W\n",
"Me=(Ep/O)*100;#Mechanical efficiency\n",
"print \"part (c)\"\n",
"print \"Mechanical efficiency,(%) = \",round(Me,3)\n",
"Ee=(Eo/Ep)*100;#Electrical efficiency\n",
"print \"Electrical efficiency,(%) = \",round(Ee,3)\n",
"Ce=(Eo/O)*100;#Commercial efficiency\n",
"print \"Commercial efficiency,(%) = \",round(Ce,3)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7 : pg 117"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"additional resistance required is,(Ohm)= 9.162\n"
]
}
],
"source": [
"#Example 6.7# resistance \n",
"#calculate the resistance\n",
"#given:\n",
"n=1000;#turns in rpm\n",
"ra=0.3;#armature resistance in ohms\n",
"rf=40;#field resistance in ohms\n",
"it=5;#field current in amperes\n",
"if1=4;#field current in amperes\n",
"e1=220.;#emf in volts\n",
"e2=200.;#emf in volts\n",
"ia=35.;#armature current in amperes\n",
"#calculations\n",
"eb=(e1-(ia*ra));#emf in volts\n",
"x=((eb-e2)/(it*if1));#additional field current in amperes\n",
"ce=e1-e2;#change in emf in volts\n",
"ix=if1+x;#total current in amperes\n",
"rt=(e1/ix);#total resistance in ohms\n",
"adr=rt-rf;#additional resistance required in ohms\n",
"#results\n",
"print \"additional resistance required is,(Ohm)=\",round(adr,3)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8 : pg 120"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"part (a)\n",
"resistance to be added is,(Ohm)= 18.644\n",
"part (b)\n",
"resistance to be added is,(Ohm)= 1.519\n",
"speed is,(rpm)= 1500.0\n"
]
}
],
"source": [
"#Example 6.8# resistance and speed\n",
"#calculate the resistance and speed\n",
"from math import ceil\n",
"#given:\n",
"v1=240.;#primary voltage\n",
"r1=0.2;#primary resistance in ohm\n",
"i1=40.;#primary current in volts\n",
"#calculations and results\n",
"eb1=(v1-i1*r1);#primary emf\n",
"n11=1800.;#number of turns on primary side in rpm\n",
"n21=1600.;#number of turns on secondary side in rpm\n",
"i2=10.;#secondary current in amperes\n",
"x=((n21/n11)*(i2/i1)*eb1);#variable\n",
"r=((v1-(i2*r1))-x)/i2;#resistance in ohm\n",
"print \"part (a)\"\n",
"print \"resistance to be added is,(Ohm)=\",round(r,3)\n",
"print \"part (b)\"\n",
"n11=1800.;#number of turns on primary side\n",
"n21=900.;#number of turns on secondary side in rpm\n",
"i2=60.;#secondary current in amperes\n",
"x=((n21/n11)*(1.18)*eb1);#variable\n",
"r=((v1-(i2*r1))-x)/i2;#resistance in ohms\n",
"print \"resistance to be added is,(Ohm)=\",round(r,3)\n",
"eb2=228.;#secondary emf in volts\n",
"eb1=232.;#primary emf in volts\n",
"p1=100.;#primary power in watt\n",
"p2=118.;#secondary power in watt\n",
"n2=((eb2/eb1)*(p1/p2)*n11);#speed in rpm\n",
"print \"speed is,(rpm)=\",ceil(n2)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9 : pg 121"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"speed is,(rpm)= 1433.938\n"
]
}
],
"source": [
"#Example 6.9# speed\n",
"#calculate the speed\n",
"from math import sqrt\n",
"#given:\n",
"i1=50.;#primary current in amperes\n",
"i2=i1/(sqrt(2));#secondary current in amperes\n",
"r1=0.2;#primary resistance in ohms\n",
"v1=220.;#primary voltage in volts\n",
"#calculations\n",
"eb1=((v1-(i1*r1)));#primary emf in volts\n",
"eb2=((v1-(i2*r1)));#secondary emf in volts\n",
"n1=1000#primary speed in rpm\n",
"n2=(n1*(eb2/eb1)*(i1/i2));#seconadry speed in rpm\n",
"#results\n",
"print \"speed is,(rpm)=\",round(n2,3)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10 : pg 124"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"part (a)\n",
" The speed of rotating magnetic field,(rpm) = 1500.0\n",
"part (b)\n",
"Motor speed,(rpm) = 1447.5\n",
"part (c)\n",
"Frequency 2.0 Hz or 120 rpm \n",
"part (d)\n",
"Frequency of rotor current,(Hz) = 50.0\n"
]
}
],
"source": [
"#Example 6.10# \n",
"#calculate the Speed ,motor speed,and frequency \n",
"#given data :\n",
"print \"part (a)\"\n",
"f=50.;#frquency in Hz\n",
"P=4;# number of pole\n",
"#calculations and results\n",
"Ns=(120*f)/P;#speed in rom\n",
"print \" The speed of rotating magnetic field,(rpm) = \",Ns\n",
"print \"part (b)\"\n",
"S=0.035;# slip\n",
"N=Ns*(1-S);#motor speed in rpm\n",
"print \"Motor speed,(rpm) = \",N\n",
"print \"part (c)\"\n",
"S=0.04;# slip\n",
"F=S*f;#frequency in Hz\n",
"print \"Frequency \",F,\" Hz or \",120,\" rpm \"\n",
"print \"part (d)\"\n",
"f=50.;# in Hz\n",
"F=f;#frequency in Hz\n",
"print \"Frequency of rotor current,(Hz) = \",F\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11 : pg 125"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"part (a)\n",
"rotor current per phase is,(A)= 14.003\n",
"power factor is,= 0.243\n",
"part (b)\n",
"rotor current per phase is,(A)= 10.206\n",
"power factor is,= 0.707\n"
]
}
],
"source": [
"#Example 6.11# \n",
"#calculate the current per phase and power factor\n",
"from math import sqrt\n",
"#given:\n",
"v1=100.;#emf in volts\n",
"vi=v1/sqrt(3);#induced emf in volts\n",
"r1=1.;#rotor resistance ohms per phase\n",
"r2=4.;#rotor reactance ohms per phase\n",
"#calculations and results\n",
"r=sqrt(r1**2+r2**2);#rotor impedence per phase\n",
"rcp=(vi/r);#rotor current per phase\n",
"pf=(1./r);#power factor\n",
"print \"part (a)\"\n",
"print \"rotor current per phase is,(A)=\",round(rcp,3)\n",
"print \"power factor is,=\",round(pf,3)\n",
"r3=3.;#ohms\n",
"r4=r1+r3;#rotor resistance ohms per phase\n",
"r2=4.;#rotor reactance ohms per phase\n",
"r=sqrt(r4**2+r2**2);#rotor impedence per phase\n",
"rcp=(vi/r);#rotor current per phase\n",
"pf=(r4/r);#power factor\n",
"print \"part (b)\"\n",
"print \"rotor current per phase is,(A)=\",round(rcp,3)\n",
"print \"power factor is,=\",round(pf,3)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12 : pg 127"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"part (a) generator \n",
"emf when the armature current is full load unit pf is,(V)= 89.444\n",
"emf when the armature current is full load 0.8 pf (lag) is,(V)= 112.857\n",
"emf when the armature current is full load 0.8 pf (lead) is,(V)= 56.71\n",
"part (b) motor\n",
"emf when the armature current is full load unit pf is,(V)= 89.444\n",
"emf when the armature current is full load 0.8 pf (lag) is,(V)= 56.71\n",
"emf when the armature current is full load 0.8 pf (lead) is,(V)= 112.857\n"
]
}
],
"source": [
"#Example 6.12# emf\n",
"#calculate the emf\n",
"from math import sqrt, pi\n",
"#given:\n",
"print \"part (a) generator \"\n",
"kva=4.;#kVA\n",
"v=110.;#volts\n",
"re=3.;#syncronous reacrance in ohms\n",
"#calculations and results\n",
"ip=((kva*10**3)/(sqrt(3)*v));#phase current in Amperes\n",
"ep=v/(sqrt(3));#phase voltage in volts\n",
"e1=ep+1j*(ip*3);#line voltage in volts\n",
"e11=sqrt((e1.real**2)+e1.imag**2);#line voltage per phase in volts\n",
"pf=0.8;#power factor\n",
"e12=(sqrt((e1.real*pf)**2+(((e1.imag*sqrt(1-pf**2))+e1.imag))**2));#\n",
"e13=(sqrt((e1.real*pf)**2+(((e1.imag*sqrt(1-pf**2))-e1.imag))**2));#\n",
"print \"emf when the armature current is full load unit pf is,(V)=\",round(e11,3)\n",
"print \"emf when the armature current is full load 0.8 pf (lag) is,(V)=\",round(e12,3)\n",
"print \"emf when the armature current is full load 0.8 pf (lead) is,(V)=\",round(e13,3)\n",
"print \"part (b) motor\"\n",
"kva=4;#kVa\n",
"v=110;#volts\n",
"re=3;#syncronous reacrance in ohms\n",
"ip=((kva*10**3)/(sqrt(3)*v));#phase current in Amperes\n",
"ep=v/(sqrt(3));#phase voltage in volts\n",
"e1=ep-1j*(ip*3);#line voltage in volts\n",
"e11=sqrt((e1.real**2)+e1.imag**2);#line voltage per phase in volts\n",
"pf=0.8;#power factor\n",
"e12=(sqrt((e1.real*pf)**2+(((e1.imag*sqrt(1-pf**2))-e1.imag))**2));#\n",
"e13=(sqrt((e1.real*pf)**2+(((e1.imag*sqrt(1-pf**2))+e1.imag))**2));#\n",
"print \"emf when the armature current is full load unit pf is,(V)=\",round(e11,3)\n",
"print \"emf when the armature current is full load 0.8 pf (lag) is,(V)=\",round(e12,3)\n",
"print \"emf when the armature current is full load 0.8 pf (lead) is,(V)=\",round(e13,3)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|