summaryrefslogtreecommitdiff
path: root/Elements_of_electrical_science_by_Mukopadhyay,_Pant/Chapter3.ipynb
blob: 603cbe11bb54aabe03f3c5618c25125bea3d89ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 3 : Magnetic Circuits"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 1 : pg 42"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "total ampere-turns required is, (AT)= 2001.15\n"
     ]
    }
   ],
   "source": [
    "# Example 3.1;ampere-turns\n",
    "#calculate the ampere turns required\n",
    "# given :\n",
    "from math import pi\n",
    "bt=([[2],[2.5],[3.0]])#making equations from Table\n",
    "H=([[400],[600],[800]]);#making equations from Tble\n",
    "fsl=10**-3;#Flux in Wb\n",
    "cal=4*10**-4;#area in m**2\n",
    "#calculations \n",
    "fdl=fsl/cal;#magnetic field in Tesla\n",
    "hl=H[1][0];#AT/m \n",
    "pll=0.57;#lenth in meter (path length 2345)\n",
    "at2345=pll*hl;#ampere turns\n",
    "fcl=2*10**-3;#magnetic field in Wb\n",
    "fdcl=fcl/cal;#in Tesla\n",
    "hcl=H[0][0];#in AT/m\n",
    "lcl=169;#length in mm\n",
    "atcl=(lcl*10**-3)*hcl;#ampere turns\n",
    "l=1;#length mm\n",
    "Hl=((4*pi))*10**-7;#AT/m\n",
    "atrg=fcl/Hl;#AT\n",
    "tat=at2345+atcl+atrg;#total ampere turns\n",
    "#results\n",
    "print \"total ampere-turns required is, (AT)=\",round(tat,2)\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 2 : pg 44"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "part (a) Kb and Ke\n",
      "Kh is  0.39\n",
      "Ke is  0.00424\n",
      "part (b) hystresis and eddy current loss \n",
      "hysteresis loss at 25 Hz is , (W)= 9.75\n",
      "eddy current loss at 25 Hz is ,(W)= 2.65\n",
      "hysteresis loss at 50 Hz is ,(W)= 19.5\n",
      "eddy current loss at 50 Hz is ,(W)= 10.6\n",
      "part (c) hystresis and eddy current loss \n",
      "hysteresis loss per kg at 50 Hz is ,(W)= 0.4875\n",
      "eddy current loss per kg at 50 Hz is ,(W)= 0.265\n"
     ]
    }
   ],
   "source": [
    "# Example 3.2;\n",
    "#calculate the Kb,Ke,hystresis and eddy current loss\n",
    "import numpy\n",
    "# given :\n",
    "f1=50.;#frequency in Hz\n",
    "f2=25.;#frequency in Hz\n",
    "p1=30.1;#power in W\n",
    "p2=12.4;#power in W\n",
    "#calculations and results\n",
    "A=([[f1, f1**2],[f2, f2**2]]);#making equations\n",
    "B=([[p1],[p2]]);##making equations\n",
    "X=numpy.dot(numpy.linalg.inv(A),B);#calculating parameters\n",
    "print \"part (a) Kb and Ke\"\n",
    "print \"Kh is \", X[0,0]\n",
    "print \"Ke is \",X[1,0]\n",
    "h25=X[0,0]*f2;#calculating parameters\n",
    "e25=X[1,0]*f2**2;#calculating parameters\n",
    "h50=X[0,0]*f1;#calculating parameters\n",
    "e50=X[1,0]*f1**2;#calculating parameters\n",
    "print \"part (b) hystresis and eddy current loss \"\n",
    "print \"hysteresis loss at 25 Hz is , (W)=\",h25\n",
    "print \"eddy current loss at 25 Hz is ,(W)=\",e25\n",
    "print \"hysteresis loss at 50 Hz is ,(W)=\",h50\n",
    "print \"eddy current loss at 50 Hz is ,(W)=\",e50\n",
    "W=40;#kg\n",
    "h50=X[0,0]*f1;#calculating parameters\n",
    "e50=X[1,0]*f1**2;#calculating parameters\n",
    "print \"part (c) hystresis and eddy current loss \"\n",
    "print \"hysteresis loss per kg at 50 Hz is ,(W)=\",h50/W\n",
    "print \"eddy current loss per kg at 50 Hz is ,(W)=\",e50/W\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 3 : pg 46"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hystersis loss is ,(W/kg)= 6.15\n"
     ]
    }
   ],
   "source": [
    "# Example 3.3;\n",
    "#Calculate the hystresis  loss per Kg\n",
    "# given :\n",
    "l=10.;#lengh in mm\n",
    "atm=200.;#AT/m\n",
    "a=4800.;#area in m**2\n",
    "#calculations\n",
    "loss=atm*(l*10**-2)*(a/100);#loss in J/m**3/cycle\n",
    "d=7.8*10**3;#kg/m**3\n",
    "vikg=1/d;#m**3\n",
    "loss1=loss*vikg;#J/cycle\n",
    "f=50;#Hz\n",
    "tl=loss1*f;#J/s\n",
    "#results\n",
    "print \"hystersis loss is ,(W/kg)=\",round(tl,2)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 4 : pg 52"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "ampere turn required is, (AT)= 478.731\n"
     ]
    }
   ],
   "source": [
    "# Example 3.4;amper-turns\n",
    "#calculate the ampere turn required\n",
    "# given :\n",
    "from math import sqrt, pi\n",
    "r=150.;#length in mm\n",
    "t=12.;#torque in N-m\n",
    "#calculations\n",
    "f=t/(r*10**-3);#force in N\n",
    "np=2;#no. of poles\n",
    "fp=f/np;#force per pole in N\n",
    "A=400.;#area mm**2\n",
    "mu=4*pi*10**-7;#\n",
    "b=sqrt((fp*2*mu)/(A*10**-6));#magnetic field in Tesla\n",
    "H=b/mu;#in AT/m\n",
    "tar=2*0.6*10**-3;#length in meter\n",
    "atr=H*tar;#AT\n",
    "#results\n",
    "print \"ampere turn required is, (AT)=\",round(atr,3)\n",
    "#answer is wrong in the textbook\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}