1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
{
"metadata": {
"name": "",
"signature": "sha256:6d073c49f372dda47c7aa22d6e606de390e394a91f8374089b05d9ccb3405267"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8 - ELECTROSTATIC AND ELECTROMAGNETIC INTERFERENCE WITH COMMUNICATION LINES"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 203"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate Voltage induced per Km in the line in Volt\n",
"import math\n",
"#Given data :\n",
"f=50.##Hz\n",
"hor_con=1.2##horizontal configuration spacing in m\n",
"x=0.85##telephone line location below power line in meter\n",
"I=120.##current in power line in A\n",
"d=0.4##spacing between conductors in meter\n",
"dAD=math.sqrt(x**2.+((hor_con+d)/2.)**2.)##m\n",
"dAC=math.sqrt(x**2.+((hor_con-d)/2.)**2.)##m\n",
"dBD=dAC##m\n",
"dBC=dAD##m\n",
"M=d*math.log(math.sqrt(dAD*dBC/dAC/dBD))##mh/km\n",
"Vm=2*math.pi*f*M*10.**-3*I##V\n",
"print '%s %.3f' %(\"Voltage induced per Km in the line in Volt :\",Vm)#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Voltage induced per Km in the line in Volt : 3.275\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - Pg 205"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate \n",
"import math\n",
"#Given data :\n",
"f=50.##HzdAP=AO+5##m\n",
"l=200.##km\n",
"V=132.*1000.##V\n",
"Load=28000.##kW\n",
"pf=0.85##lagging power factor\n",
"r=5./1000.##radius of conductor in m\n",
"#From the figure given in question\n",
"AO=math.sqrt(4.**2.-2.**2.)##m\n",
"dAP=AO+5.##m\n",
"dAQ=dAP+1.##m\n",
"dBP=math.sqrt(5.**2.+2.**2.)##m\n",
"dBQ=math.sqrt(6.**2.+2.**2.)##m\n",
"MA=0.2*math.log(dAQ/dAP)##mH/km\n",
"MB=0.2*math.log(dBQ/dBP)##mH/km\n",
"MC=MB##mH/km\n",
"M=MB-MA##mH/km(MA,MB and Mc are print '%s %.2f' %laced by 120 degree)\n",
"I=Load*1000./math.sqrt(3.)/V/pf##A\n",
"Vm=2.*math.pi*f*M*10.**-3.*I##V/km\n",
"Vm1=Vm*l##V(For whole route)\n",
"print '%s %.1f' %(\"Induced Voltage(For whole route) in Volts : \",Vm1)#\n",
"VA=V/math.sqrt(3.)##V\n",
"VB=V/math.sqrt(3.)##V\n",
"hA=20.+AO##m\n",
"VPA=VA*math.log((2.*hA-dAP)/dAP)/math.log((2.*hA-r)/r)##V\n",
"VPB=VB*math.log((2.*hA-dBP)/dBP)/math.log((2.*hA-r)/r)##V\n",
"VPC=VPB##V\n",
"VP=VPB-VPA##V\n",
"print '%s %.f' %(\"Potential of telephone conductor in Volts :\",VP)#\n",
"#Answer in the book is wrong due to little accuracy as compared to scilab.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Induced Voltage(For whole route) in Volts : 88.9\n",
"Potential of telephone conductor in Volts : 4409\n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|