1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
{
"metadata": {
"name": "",
"signature": "sha256:7a4739840eca82c1ce9eed121a54d5060bb7d710089eb77f452cc47ec3867eee"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7 - CORONA"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 189"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate Line Voltage for comencing of corena(in kV)\n",
"import math\n",
"#Given data :\n",
"r=1.##cm\n",
"d=4.##meter\n",
"g0=30./math.sqrt(2.)##kV/cm\n",
"LineVoltage=math.sqrt(3.)*g0*r*math.log(d*100./r)##kV\n",
"print '%s %.2f' %(\"Line Voltage for comencing of corena(in kV) :\",round(LineVoltage))#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Line Voltage for comencing of corena(in kV) : 220.00\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - Pg 190"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate Disruptive critical voltage from line to line(kV rms)\n",
"import math\n",
"#Given data :\n",
"Ph=3.##phase\n",
"V=220.##kV\n",
"f=50.##Hz\n",
"r=1.2##cm\n",
"d=2.##meter\n",
"mo=0.96##Irregularity factor\n",
"t=20.##degree C\n",
"T=t+273.##K\n",
"b=72.2##cm\n",
"go=21.1##kV rms/cm\n",
"dela=3.92*b/T##Air density factor\n",
"Vdo=go*dela*mo*r*math.log(d*100./r)##in kV\n",
"Vdo_line=math.sqrt(3.)*Vdo##in kV\n",
"print '%s %.2f' %(\"Disruptive critical voltage from line to line(kV rms) : \",round(Vdo_line))#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Disruptive critical voltage from line to line(kV rms) : 208.00\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E3 - Pg 190"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate Spacing between conductors in meter\n",
"import math\n",
"#Given data :\n",
"V=132.##kV\n",
"r=2./2.##cm\n",
"Vexceed=210.##kV(rms)\n",
"go=30000./math.sqrt(2.)##Volts/cm\n",
"go=go/1000.##kV/cm\n",
"Vdo=Vexceed/math.sqrt(3.)##Volt\n",
"mo=1.##assumed \n",
"dela=1.##assumed air density factor\n",
"#Formula : Vdo=go*del*mo*r*log(d*100/r)##in kV\n",
"d=math.exp(Vdo/go/dela/mo/r)*r##cm\n",
"print '%s %.2f' %(\"Spacing between conductors in meter : \",d*10**-2)#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Spacing between conductors in meter : 3.04\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E4 - Pg 190"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate Minimum Diameter of conductor by Hit & Trial method(cm)\n",
"import math\n",
"import numpy\n",
"#Given data :\n",
"Ph=3.##phase\n",
"V=132.##kV\n",
"f=50.##Hz\n",
"d=3.##meter\n",
"d=d*100.##in cm\n",
"go=21.21##kV/cm : assumed\n",
"mo=0.85##assumed \n",
"dela=0.95##assumed air density factor\n",
"Vdo=V/math.sqrt(3.)##kV\n",
"#Formula : Vdo=go*del*mo*r*log(d*100/r)##in kV\n",
"#r*log(d/r)=Vdo/go/del/mo: solving\n",
"#Implementing Hit & Trial method\n",
"w=numpy.zeros(200)\n",
"\n",
"w[0]=.1\n",
"for i in range (1,200):\n",
"\tw[i]=.1+w[i-1];\n",
"\n",
"for r in w:\n",
" if round(r*math.log(d/r))==round(Vdo/go/dela/mo):\n",
" print '%s %.2f' %(\"Minimum Diameter of conductor by Hit & Trial method(cm) : \",2*r)#\n",
" break"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Minimum Diameter of conductor by Hit & Trial method(cm) : 1.20\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E5 - Pg 191"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate g1max(kV/cm)\n",
"import math\n",
"#Given data :\n",
"r=2.5/2.##cm\n",
"epsilon_r=4.##constant\n",
"r1=3./2.##cm\n",
"r2=9./2.##cm\n",
"V=20.##kV(rms)\n",
"#Formula : gmax=q/(2*epsilon*r)\n",
"g2maxBYg1max=r/epsilon_r/r1##unitless\n",
"#Formula : V=g1max*r*log(r1/r)+g2max*r1*log(r2/r1)\n",
"g1max=V/(r*math.log(r1/r)+g2maxBYg1max*r1*math.log(r2/r1))##in kV/cm\n",
"print '%s %.2f' %(\"g1max(kV/cm) = \",g1max)#\n",
"print '%s' %(\"Corona will be present.g1max > go\")#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"g1max(kV/cm) = 35.01\n",
"Corona will be present.g1max > go\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E6 - Pg 192"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate Line to line visual critical voltage for local corona(kV-rms),Line to line visual critical voltage for general corona(kV-rms)\n",
"import math\n",
"#Given data :\n",
"Ph=3.##phase\n",
"r=10.4/2##mm\n",
"r=r/10.##in cm\n",
"d=2.5##meter\n",
"d=d*100.##in cm\n",
"t=21.##degree C\n",
"T=t+273.##K\n",
"b=73.6##cm-Hg\n",
"mo=0.85# \n",
"mv_l=0.7#\n",
"mv_g=0.8#\n",
"go=21.21##kV/cm : assumed\n",
"dela=3.92*b/T##Air density factor\n",
"#Formula : Vdo=go*del*mo*r*log(d*100/r)##kV\n",
"Vdo=go*dela*mo*r*math.log(d/r)##kV\n",
"Vdo_line=math.sqrt(3.)*Vdo##kV\n",
"Vvo=go*dela*mv_l*r*(1+.3/math.sqrt(dela*r))*math.log(d/r)##kV\n",
"Vvo_line_local=Vvo*math.sqrt(3.)##kV(rms)\n",
"print '%s %.1f' %(\"Line to line visual critical voltage for local corona(kV-rms) : \",Vvo_line_local)\n",
"Vvo_line_general=Vvo_line_local*mv_g/mv_l##kV(rms)\n",
"print '%s %.f' %(\"Line to line visual critical voltage for general corona(kV-rms) : \",Vvo_line_general)\n",
"#Note : Answer in the book is not accurate.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Line to line visual critical voltage for local corona(kV-rms) : 115.1\n",
"Line to line visual critical voltage for general corona(kV-rms) : 132\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E7 - Pg 193"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate Corona Loss at 113 kV in kW ,Disruptive critical voltage between lines(kV)\n",
"#Given data :\n",
"import math\n",
"Pc1=53.##in kW\n",
"V1=106.##in kV\n",
"Pc2=98.##in kW\n",
"V2=110.9##in kV\n",
"Vph1=V1/math.sqrt(3.)##in kV\n",
"Vph2=V2/math.sqrt(3.)##in kV\n",
"#Formula : Pc=3*244/del*(f+25)*sqrt(r/d)*(Vph-Vdo)**2*10**-5##kW/Km\n",
"print '%s' %(\"Using proportionality : Pc is proportional to (Vph-Vdo)**2\")#\n",
"print '%s' %(\"We have, Pc1/Pc2 = (Vph1-Vdo)**2/(Vph2-Vdo)**2\")#\n",
"Vdo=(Vph1-math.sqrt(Pc1/Pc2)*(Vph2))/(1-math.sqrt(Pc1/Pc2))#\n",
"V3=113.##in kV\n",
"Vph3=V3/math.sqrt(3.)##in kV\n",
"Pc3=Pc2*(Vph3-Vdo)**2./(Vph2-Vdo)**2##in kW\n",
"print '%s %.1f' %(\"Corona Loss at 113 kV in kW : \",Pc3)#\n",
"VLine=math.sqrt(3.)*Vdo##in kV\n",
"print '%s %.1f' %(\"Disruptive critical voltage between lines(kV): \",VLine)#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Using proportionality : Pc is proportional to (Vph-Vdo)**2\n",
"We have, Pc1/Pc2 = (Vph1-Vdo)**2/(Vph2-Vdo)**2\n",
"Corona Loss at 113 kV in kW : 121.5\n",
"Disruptive critical voltage between lines(kV): 92.4\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E8 - Pg 194"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate Total corona loss under foul weather condition using Peek formula in kW,Total corona loss under foul weather condition using Peterson formula in kW \n",
"import math\n",
"#Given data :\n",
"f=50.##Hz\n",
"l=160.##km\n",
"r=1.036/2.##cm\n",
"d=2.44*100.##cm\n",
"g0=21.1##kV/cm(rms)\n",
"m0=0.85##irregularity factor\n",
"mv=0.72##roughness factor\n",
"b=73.15##cm\n",
"t=26.6##degree C\n",
"dela=3.92*b/(273.+t)##air density factor\n",
"Vd0=g0*dela*m0*r*math.log(d/r)##kV(rms)\n",
"print '%s %.2f' %(\"Critical disruptive voltage(rms) in kV : \",Vd0)#\n",
"Vv0=g0*dela*mv*r*(1+0.3/math.sqrt(dela*r))*math.log(d/r)##kV\n",
"print '%s %.1f' %(\"Visual Critical voltage(rms) in kV : \",Vv0)#\n",
"Vph=110./math.sqrt(3.)##in kV\n",
"Pc_dash=d/dela*(f+25)*math.sqrt(r/d)*(Vph-0.8*Vd0)**2*10**-5##kW/km/phase\n",
"T_Corona_loss=l*3*Pc_dash##kW\n",
"print '%s %.f' %(\"Total corona loss under foul weather condition using Peek formula in kW : \",T_Corona_loss)#\n",
"VphBYVd0=Vph/Vd0/0.8#\n",
"K=0.46##constant\n",
"Corona_loss=21*10**-5*f*Vph**2*K/(math.log10(d/r))**2##kW/km/phase\n",
"T_corona_loss=Corona_loss*3*l##kW\n",
"print '%s %.1f' %(\"Total corona loss under foul weather condition using Peterson formula in kW : \",T_corona_loss)#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Critical disruptive voltage(rms) in kV : 54.73\n",
"Visual Critical voltage(rms) in kV : 66.1\n",
"Total corona loss under foul weather condition using Peek formula in kW : 1645\n",
"Total corona loss under foul weather condition using Peterson formula in kW : 1308.7\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E9 - Pg 195"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate Power loss due to corona for fair weather condition,Total corona loss using Peek formula in kW,Total corona loss under foul weather condition using Peterson formula in kW \n",
"import math\n",
"#given data :\n",
"f=50.##Hz\n",
"l=175.##km\n",
"r=1./2.##cm\n",
"d=3.*100.##cm\n",
"g0=21.1##kV/cm(rms)\n",
"m0=0.85##irregularity factor\n",
"mv=0.72##roughness factor\n",
"mv_dash=0.82##roughness factor\n",
"b=74.##cm\n",
"t=26.##degree C\n",
"Vph=110./math.sqrt(3.)##kV\n",
"dela=3.92*b/(273.+t)##air density factor\n",
"Vd0=g0*dela*m0*r*math.log(d/r)##kV(rms)\n",
"Vvo=g0*dela*mv*r*(1.+0.3/math.sqrt(dela*r))*math.log(d/r)##kV rms\n",
"Vvo_dash=Vvo*mv_dash/mv##kV rms\n",
"Pc=244./dela*(f+25.)*math.sqrt(r/d)*(Vph-Vd0)**2.*10.**-5##kW/Km/phase\n",
"T_CoronaLoss=Pc*l*3.##kW\n",
"print '%s' %(\"Power loss due to corona for fair weather condition : \")#\n",
"print '%s %.f' %(\"Total corona loss using Peek formula in kW : \",T_CoronaLoss)#\n",
"K=0.0713##constant for Vph/Vdo=1.142\n",
"Pc=21.*10.**-5*f*Vph**2./(math.log10(d/r))**2.*K##kW/Km/phase\n",
"T_CoronaLoss=Pc*l*3##kW\n",
"print '%s %.1f' %(\"According Peterson formula, Total corona loss for 175 km 3-phase line(kW): \",T_CoronaLoss)#\n",
"print '%s' %(\"Power loss due to corona for stormy weather condition : \")#\n",
"Vd0=0.8*Vd0##kV\n",
"Pc_dash=l*3.*244./dela*(f+25.)*math.sqrt(r/d)*(Vph-Vd0)**2.*10.**-5##kW/Km/phase\n",
"print '%s %.f' %(\"Total corona loss using Peek formula in kW : \",Pc_dash)#\n",
"K=0.395##constant for Vph/Vdo=1.42\n",
"Pc=21.*10.**-5*f*Vph**2./(math.log10(d/r))**2.*K##kW/Km/phase\n",
"T_CoronaLoss=Pc*l*3.##kW\n",
"print '%s %.f' %(\"According Peterson formula, Total corona loss for 175 km 3-phase line(kW): \",T_CoronaLoss)#\n",
"#Answer is wrong in the book for corona loss fair weather condition using Peek formula.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power loss due to corona for fair weather condition : \n",
"Total corona loss using Peek formula in kW : 249\n",
"According Peterson formula, Total corona loss for 175 km 3-phase line(kW): 205.4\n",
"Power loss due to corona for stormy weather condition : \n",
"Total corona loss using Peek formula in kW : 1457\n",
"According Peterson formula, Total corona loss for 175 km 3-phase line(kW): 1138\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|