summaryrefslogtreecommitdiff
path: root/Elements_of_Physical_Chemistry/Chapter6.ipynb
blob: f3e0726f4081c5e4816ea54372b6670c26f946da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6 - The properties of mixtures"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E1 - Pg 112"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate the mole fraction of glycerine\n",
      "#Initialization of variables\n",
      "m=0.14 #mol/kg\n",
      "w=1. #kg Assume\n",
      "#Calculations\n",
      "ngly=m*w\n",
      "nwater=w*1000 /18.02\n",
      "ntotal=ngly+nwater\n",
      "xgly=ngly/ntotal\n",
      "#results\n",
      "print '%s %.2e' %('Mole fraction of glycerine  is xgly =',xgly)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mole fraction of glycerine  is xgly = 2.52e-03\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E2 - Pg 114"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate the volume of the mixture\n",
      "#Initialization of variables\n",
      "mE=50. #g\n",
      "mW=50. #g\n",
      "#calculations\n",
      "nE=mE/46.\n",
      "nW=mW/18.\n",
      "ntotal=nE+nW\n",
      "xE=nE/ntotal\n",
      "xW=1-xE\n",
      "print '%s' %('for the observed xE and xW')\n",
      "vE=55 #cc/mol\n",
      "vW=18 #cc/mol\n",
      "V=nE*vE+nW*vW\n",
      "#results\n",
      "print '%s %.1f %s' %('\\n Volume of the mixture =',V,'cm^3 ')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "for the observed xE and xW\n",
        "\n",
        " Volume of the mixture = 109.8 cm^3 \n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E3 - Pg 121"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Calculate Ka and Kc from the raoults law line \n",
      "#Initialization of variables\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "xc=([0, 0.20, 0.40, 0.60, 0.80, 1])\n",
      "pc=([0, 35, 82, 142, 219, 293])\n",
      "pa=([347, 270, 185, 102, 37, 0])\n",
      "#calculations\n",
      "pyplot.plot(xc,pc)\n",
      "pyplot.plot(xc,pa)\n",
      "pyplot.xlabel('Mole fraction xc')\n",
      "pyplot.ylabel('Pressure /Torr')\n",
      "print '%s' %('From the graph it is clear that KA=175 torr and KC=165 torr. They are plotted with Raoults law lines')\n",
      "pyplot.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "From the graph it is clear that KA=175 torr and KC=165 torr. They are plotted with Raoults law lines\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdUVOfWwOEfTa+9ixFUjKKI0iwolohR7GIngh1LNInR\nWG40uUkwRUiPJX7XXkE0xpZEjSWiwQYWlEiiaFARxIYdDe18f5zrRCNKnTkzw37WYjnMnDmzOQvP\n5m37tVAURUEIIYT4B0utAxBCCGGcJEEIIYTIkSQIIYQQOZIEIYQQIkeSIIQQQuRIEoQQQogc6S1B\nPHz4kJYtW+Lu7o6zszMzZswAICgoCHt7ezw8PPDw8GDbtm269wQHB+Po6IiTkxM7duzQV2hCCCHy\nwEKf6yDS0tIoXbo0mZmZtG3bli+++ILdu3dTrlw5Jk+e/MSxcXFxBAQEEB0dTVJSEp06deLMmTNY\nWkojRwghtKDXu2/p0qUBSE9PJysri0qVKgGQU07avHkz/v7+2NjY4ODgQP369YmKitJneEIIIZ5D\nrwkiOzsbd3d3bG1t6dChA40bNwZg7ty5uLm5MWrUKG7dugVAcnIy9vb2uvfa29uTlJSkz/CEEEI8\nh14ThKWlJTExMVy6dIl9+/YRERHB+PHjSUhIICYmhhdeeIEpU6Y88/0WFhb6DE8IIcRzWBviQypU\nqECPHj04cuQI3t7euudHjx5Nr169ALCzsyMxMVH32qVLl7Czs3vqXPXr1+fcuXN6j1kIIcxJvXr1\nOHv2bL7eo7cWxPXr13XdRw8ePGDnzp14eHiQkpKiO2bjxo24uLgA4OvrS3h4OOnp6SQkJBAfH4+n\np+dT5z137hx3/7qLoijF/uuDDz7QPAZj+ZJrIddCrsXzvwryh7XeWhCXL19m+PDhZGdnk52dzdCh\nQ+nYsSPDhg0jJiYGCwsL6taty4IFCwBwdnbGz88PZ2dnrK2tmT9//jO7mJovbE74gHDca7jrK3wh\nhCj29JYgXFxcOHbs2FPPr1y58pnveeedd3jnnXdyPfd7L72HzyofPmj/Aa+3eF3GKoQQQg9McpHB\nYNfBHBx1kOUxy+m7ti830m5oHZImHh/PKe7kWvxNrsXf5FoUjl4XyumDhYUFj0JOz0rnnd3vsO7U\nOkL7hdKuTjuNoxNCCOP0+L0zz+8x5QTxyNb4rYzaMorXmr/GO+3ewcrSSqPohBDCOBXbBAGQfDeZ\nIRuGoKCwuu9q7Mo/PUVWCCGKq4IkCJMcg8hJzXI12Tl0Jx3rdqTZwmb8dOYnrUMSQgiTZjYtiMdF\nXoxk8IbB9G/Un+COwZS0Lmmg6IQQwjgV6xbE49rWbsvxV4+TcCuBNkvbcDY1f6sHhRBCmGmCAKhc\nqjIb/DYw0n0kXku8CD0ZqnVIQghhUsyyi+mfTqSc4JX1r+BVy4u53eZStkRZPUUnhBDGSbqYnsGt\nhhtHxx7FAguaL2xOTEqM1iEJIYTRKxYtiMeFxYYxcftEKdMhhChWivU6iPw4m3qWQesHYV/eniW+\nS6hSukoRRSeEEMZJupjyqH7l+hwYdYD6levjscCDXy/8qnVIQghhdIplC+JxUqZDCFEcSBdTAUmZ\nDiGEuZMupgKSMh1CCPE0aUH8g5TpEEKYI2lBFAEp0yGEECpJEDmQMh1CCCFdTLmSMh1CCHMgXUx6\n8KhMhyWWUqZDCFGsSAsiH6RMhxDCVMk6CAOQMh1CCFNkVF1MDx8+pGXLlri7u+Ps7MyMGTMASE1N\nxcfHhwYNGtC5c2du3bqle09wcDCOjo44OTmxY8cOfYVWKFKmQwhRXOi1BZGWlkbp0qXJzMykbdu2\nfPHFF2zZsoWqVavy73//m08//ZSbN28SEhJCXFwcAQEBREdHk5SURKdOnThz5gyWlk/mMK1bEI+T\nMh1CCFNhVC0IgNKlSwOQnp5OVlYWlSpVYsuWLQwfPhyA4cOHs2nTJgA2b96Mv78/NjY2ODg4UL9+\nfaKiovQZXqF1d+zO0bFH2XN+D51WdSLpTpLWIQkhRJHRa4LIzs7G3d0dW1tbOnToQOPGjbly5Qq2\ntrYA2NracuXKFQCSk5Oxt7fXvdfe3p6kJOO/4UqZDiGEubLW58ktLS2JiYnh9u3bdOnShT179jzx\nuoWFxXNnAj3rtaCgIN1jb29vvL29iyLcArOytOI/L/0HbwdvtUxHgpTpEEJoKyIigoiIiEKdQ68J\n4pEKFSrQo0cPjh49iq2tLSkpKdSoUYPLly9TvXp1AOzs7EhMTNS959KlS9jZ5VxV9fEEYUwelekY\ntWUUbZa2IXxAOPUr19c6LCFEMfTPP55nzpyZ73PorYvp+vXruhlKDx48YOfOnXh4eODr68uKFSsA\nWLFiBX369AHA19eX8PBw0tPTSUhIID4+Hk9PT32FpzePynQEegRKmQ4hhEnTWwvi8uXLDB8+nOzs\nbLKzsxk6dCgdO3bEw8MDPz8/lixZgoODA+vWrQPA2dkZPz8/nJ2dsba2Zv78+Sa7EM3CwoLXWrxG\nm1pteGX9K+xK2CVlOoQQJkcWyunZ/fT7vLntTfYn7id8QDjuNdy1DkkIUYw8eAAhIfDhh0Y2zVVA\nmRJlWNJ7Ce+3fx+fVT7Mi5pnUglOCGG6TpyAFi3gjz8K9n5pQRiQlOkQQhhCdjZ89RV8+qn675Ah\nYGkpLQijJmU6hBD6lpgInTrB5s0QHQ1Dh0JBh3MlQRhYCasSfNH5C/7b87/4rffjo70fkZWdpXVY\nQggzsG4dNG+uJoiICHBwKNz5pItJQ8l3kxmyYQgKCqv7rsaufM7rPoQQ4nlu34YJE+DwYVi9Wh13\n+Cejq8Uknk/KdAghCisyEtzdoUwZOHYs5+RQUNKCMBKRFyPVMh2NpEyHECJ3GRkQFARLl8LChdCr\n1/OPlxaECXtUpuP8rfO0WdqGs6lntQ5JCGGkTp+G1q0hJkb9yi05FJQkCCNSuVRlvvf7Xsp0CCFy\npCiwYAG0bQuBgfDjj/C/4th6IV1MRupEygleWf8KXrW8pEyHEIKrV2HUKEhOhtBQcHLK3/uli8mM\nuNVw4+jYo1hiSfOFzYlJidE6JCGERn76SR2IdnGBgwfznxwKSloQJiAsNoyJ2yfyQfsPeL3F6yZb\nxFAIkT9paTB1KmzdCitXwksvFfxcBbl3SoIwEVKmQ4ji5ehRGDxYnbY6bx5UqFC480kXkxmTMh1C\nFA9ZWRAcDN26qdNYV60qfHIoKGlBmKCt8VsZtWUUk1tNZmrrqdLlJISZuHBBrZ1kZQUrVkDt2kV3\nbmlBFBPdHbsTPSaadXHrGLxhMGkZaVqHJIQopNBQtTupZ0/Ytatok0NBSQvChD3IeMDYH8dy6uop\nNg3aRO0KRvAbJYTIl5s34fXX1QVvoaHg4aGfz5EWRDFTyqYUK/usZIjrEFoubsm+C/u0DkkIkQ8R\nEer01apV1UFpfSWHgpIWhJnYeW4nQzYOIah9EOOaj5NxCSGM2F9/wXvvqS2GxYvVAWl9k2muxdy5\n1HP0Du9N61qtmdttrhT8E8IIxcWp01fr1IFFi6BaNcN8rnQxFXP1Ktfj4KiDXE+7zssrXyblXorW\nIQkh/kdR1PUM7durYw4bNxouORSUtCDMULaSzcf7PmbRsUVs8NtAC7siLBAvhMi3y5fV4nqpqeqG\nPo6Oho9BWhACAEsLS95v/z7zus2jR1gPVp5YqXVIQhRbmzerg88tWqib+2iRHApKbwkiMTGRDh06\n0LhxY5o0acKcOXMACAoKwt7eHg8PDzw8PNi2bZvuPcHBwTg6OuLk5MSOHTv0FVqx0dupN3uG7+Gj\nfR8x+efJZGZnah2SEMXGvXswZgy89RZs2AAffgg2NlpHlT9662JKSUkhJSUFd3d37t27R7Nmzdi0\naRPr1q2jXLlyTJ48+Ynj4+LiCAgIIDo6mqSkJDp16sSZM2ewtHwyh0kXU/7dfHCTQd8PIis7i7UD\n1kodJyH07PBhGDJE3bdh9mwoX17riIysi6lGjRq4u7sDULZsWRo1akRSUhJAjkFu3rwZf39/bGxs\ncHBwoH79+kRFRekrvGKlUqlKbA3YStMXmuK52JPYK7FahySEWcrMVFsKvr5qPaVly4wjORSUQcYg\nzp8/z/Hjx2nVqhUAc+fOxc3NjVGjRnHr1i0AkpOTsbe3173H3t5el1BE4VlZWvGZz2d86P0hL698\nmQ2/b9A6JCHMyp9/quW4f/0Vjh2DAQO0jqjwrPX9Affu3WPAgAHMnj2bsmXLMn78eN5//30A3nvv\nPaZMmcKSJUtyfO+zFnsFBQXpHnt7e+Pt7V3UYZutwa6DcarqRL91/YhJiSHIOwhLC5mrIERBKYpa\nWG/aNHjnHZg4ESyN4L9UREQEERERhTqHXqe5ZmRk0LNnT7p168akSZOeev38+fP06tWL2NhYQkJC\nAJg+fToAXbt2ZebMmbRs2fLJgGUMokhcvX+VAesGUKlUJVb1XUX5kibcDhZCIzduwLhx8McfEBam\n7vhmrIxqDEJRFEaNGoWzs/MTyeHy5cu6xxs3bsTlf1fU19eX8PBw0tPTSUhIID4+Hk9PT32FV+xV\nL1OdXcN2YVfOjlaLWxF/I17rkIQwKTt3gpsb1KoF0dHGnRwKSm9dTPv372f16tW4urri8b8KVLNm\nzWLNmjXExMRgYWFB3bp1WbBgAQDOzs74+fnh7OyMtbU18+fPl3pCelbCqgTze8xn4dGFtF3WlhV9\nVtC1fletwxLCqD18CDNmwPr1sHw5dOqkdUT6IyupBQCRFyPx+86PSa0mMa31NEnOQuQgNlato9Sg\nASxYAFVMaMa4FOsThZJ4O5G+a/vSoEoDFvsuprRNaa1DEsIoZGer6xlmzYLPP4fhw8HU/oYyqjEI\nYXpqVajFryN/xcrSirZL23Lx9kWtQxJCc0lJ0Lmz2qV0+DCMGGF6yaGgJEGIJ8gmREL8bf16aNpU\nrcC6dy+8+KLWERmWdDGJZ3q0CdEH7T9gfPPxMi4hio07d9T1DJGR6qY+5jChUrqYRJHyqefDgcAD\nzI+ez9gfxvJX5l9ahySE3u3fr24DamMDx4+bR3IoKEkQ4rkebUJ048EN2YRImLWMDHUb0P794euv\nYeFCKFtW66i0JQlC5KpcyXKs91tPl3pdaLGoBdFJ0VqHJESRio9XK68eOQIxMdC7t9YRGQdJECJP\nHm1CNLfbXNmESJgNRVH3hW7dGoYOha1boUYNraMyHjJILfLt1NVT9Fnbh14NevGZz2dYW+q95qMQ\nRe7aNXVDnwsX1IFoZ2etI9IvGaQWBtG4emOiRkdx6topuq7uyo20G1qHJES+bNum1lFq2BAOHTL/\n5FBQkiBEgcgmRMIUPXgAEyaoFVjDwuDTT6FkSa2jMl7PTRBZWVlMnTrVULEIEyObEAlTcvw4NGsG\n16+rA9GyjUzuntt5bGVlRWRkJIqiyCIp8UyyCZEwZllZ8OWXag2lb75Ri+2JvMl1kHrcuHEkJycz\ncOBASpdWi7dZWFjQr18/gwT4TzJIbbyu3LvCgO8GULlUZdmESBiFixfVwnrZ2bByJdSpo3VE2tHL\nIPVff/1FlSpV+OWXX/jxxx/58ccf+eGHHwocpDBftmVt2T1st2xCJIxCeDg0bw5dusAvvxTv5FBQ\nz+1iysrKonLlynz55ZeGikeYONmESGjt/n11IHr/fnW2UrNmWkdkup7bgrCysmL//v3SpSPybWyz\nsXzv9z2BmwP5bP9n8jskDOLECbXVkJ0NR49KcigsGYMQeiWbEAlDUBSYPx+CgtQ6SkOGaB2R8dHL\njnIjRozQnfxxy5Yty190RUQShOl5kPGAsT+O5dTVU2watInaFWprHZIwI6mpMGqUOiAdHg6OjlpH\nZJxky1FhtBRF4etDX/P5gc9ZO2AtL9V5SeuQhBmIjFSnrfbrByEhsujtefQyiykxMZG+fftSrVo1\nqlWrRv/+/bl06VKBgxTFk4WFBZO9JrOyz0oGfjeQ+dHzJdGLAsvKgo8/hgED4Ntv1W4lSQ5FL9cE\nMXLkSHx9fUlOTiY5OZlevXoxcuRIQ8QmzJBsQiQKKzkZfHxg1y51ILpnT60jMl+5Johr164xcuRI\nbGxssLGxYcSIEVy9etUQsQkzJZsQiYLaulWdmeTtDbt3g52d1hGZt2cmiEOHDgFQpUoVVq1aRVZW\nFpmZmaxevZqqVavmeuLExEQ6dOhA48aNadKkCXPmzAEgNTUVHx8fGjRoQOfOnbl165buPcHBwTg6\nOuLk5MSOHTsK+7MJIyabEIn8SE+HKVPUIntr18L774OVldZRFQPKM7i7uyuKoigJCQlKz549lapV\nqypVq1ZVfH19lQsXLjzrbTqXL19Wjh8/riiKoty9e1dp0KCBEhcXp0ybNk359NNPFUVRlJCQEOXt\nt99WFEVRTp06pbi5uSnp6elKQkKCUq9ePSUrK+up8z4nZGGiNv6+Uan2WTVlRcwKrUMRRig+XlGa\nN1cUX19FuX5d62hMV0HunbkmiKLSu3dvZefOnUrDhg2VlJQURVHUJNKwYUNFURRl1qxZSkhIiO74\nLl26KAcPHnw6YEkQZum3K78p9efUVyZtm6RkZGVoHY4wEmFhilK1qqLMnaso2dlaR2PaCnLvfGap\njYSEBHr16pXjaxYWFmzZsiXPrZTz589z/PhxWrZsyZUrV7C1tQXA1taWK1euAJCcnEyrVq1077G3\ntycpKSnPnyFMW+PqjTk8+jD+3/vTdXVX1g5YS5XSVbQOS2jk8XIZO3eCu7vWERVPz0wQ1apVY+rU\nqTlORcxP6e979+7Rv39/Zs+eTbly5Z46z/PO9azXgoKCdI+9vb3xlsLuZqFyqcr8FPATM3bNwHOx\nJ5te2YSLrYvWYQkDO3ECBg2Cli3VWUply2odkWmKiIggIiKicCd5VtOiKLqY0tPTlc6dOytff/21\n7rmGDRsqly9fVhRFUZKTk3VdTMHBwUpwcLDuuC5duiiHDh166pzPCVmYkdUnVitVP6uqrD+1XutQ\nhIFkZyvKvHlql9KqVVpHY34Kcu985iymSpUqFTbxMGrUKJydnZk0aZLueV9fX1asWAHAihUr6NOn\nj+758PBw0tPTSUhIID4+Hk9Pz0LFIEzXYNfBbB+8nbd+fov397xPtpKtdUhCj1JT1dXQS5fCgQNS\nS8lYPLPURrdu3UhNTaVDhw507dqVtm3bYm393OrgT4iMjOSll17C1dVV11UUHByMp6cnfn5+XLx4\nEQcHB9atW0fFihUBmDVrFkuXLsXa2prZs2fTpUuXpwOWUhvFimxCZP6kXIZhFHktpgcPHhAREcH2\n7dvZv38/tWrVolu3bnTt2pXatbUpuCYJovhJz0pn4raJ7L2wl82DNuNYRaqxmYOsLAgOhnnzYPFi\nWRGtb3ov1vfnn3+ybds2fv75Z1JSUoiKisp3kIUlCaL4WnBkAe9HvC+bEJmB5GS1Gyk7G0JDZUW0\nIRi0mutff/1FSQ3agpIgirfIi5H4fefHpFaTmNZ6Wr5m1AnjsHWrWp57/Hh4911ZEW0oUu5bFAuy\nCZFpSk+HGTPgu+9g9Wp4SSq+G5Reyn0LYWxqVajFryN/xcrSirZL23Lx9kWtQxK5OHsW2rRR/z1+\nXJKDqchTgkhLS+P06dP6jkWIPCtlU4qVfVYy2GUwLRe3JOJ8hNYhiWdYswa8vGD4cNi0CarIAnmT\nkWuC2LJlCx4eHropp8ePH8fX11fvgQmRGwsLC6a0nsLKPisZtH4QXx/8Wrofjcj9+xAYqO4TvXMn\nvPEGyJCRack1QQQFBXH48GHdwjkPDw/+/PNPvQcmRF751PPh0OhDrDq5isEbBnM//b7WIRV7J05A\n8+bqLKWjR6WWkqnKNUHY2NjoFrLp3mQpQxfCuDhUdGB/4H5srGzwWuLFudRzWodULCmKugVop07q\nDKXly6WWkinL9U7fuHFjQkNDyczMJD4+ngkTJtC6dWtDxCZEvpSyKcXy3st5tdmrtF7amm3x27QO\nqViRchnmJ9cEMW/ePE6dOkXJkiXx9/enfPnyfPPNN4aITYh8s7Cw4HXP19ngt4HRP4zmo70fSR0n\nA4iMBA8PcHBQk4OjLHY3C89dB5GZmYmPjw979uwxZEzPJesgRF4l301m4HcDqVq6Kiv7rKTCvypo\nHZLZkXIZpqPI10FYW1tjaWn5xL7RQpiKmuVqsmf4HmqVr0WLRS04dfWU1iGZleRk8PGBXbvUgWhJ\nDuYn1/KsZcqUwcXFBR8fH8qUKQOomWjOnDl6D06IwiphVYJ53eexImYF3iu8md99PgMbD9Q6LJMn\n5TKKh1xLbSxfvvzpN1lYMHz4cH3F9FzSxSQK6tjlY/Rb249XGr/CJx0/wdoy7+XrhUrKZZguqcUk\nRC6up13H/3t/FEUhfEA4VUtX1Tokk3H2LPj7Q82a6kwlWRFtWvSSIOrWrZvjB2m1WE4ShCisrOws\n3v3lXcJ/C+d7v+9pVrOZ1iEZvTVr4M034YMP4PXXZUW0KSrIvTPXNnZ0dLTu8cOHD1m/fj03btzI\nf3RCGAkrSytCOoXQvGZzuoZ25QufLxjurk2XqbG7fx8mTID9+9VyGbIiungpUBdT06ZNOXbsmD7i\nyZW0IERRirsWR9+1felUtxNfd/2aElYltA7JaJw4AYMGQcuW6jRWWRFt2vTSgjh69KhuU5bs7GyO\nHDlCVlZWwSIUwsg4V3MmanQUwzYNw3u5N+v91lOzXE2tw9KUosD8+WqRva+/lhXRxVmuLQhvb29d\ngrC2tsbBwYGpU6fSsGFDgwT4T9KCEPqQrWQz69dZ/N+R/2PtgLW0rd1W65A0kZqqTl+9eBHCw2VF\ntDmRWUxCFNK2+G2M2DyC9156j9dbvF6stjSNjITBg9V6SiEhoMGOwkKP9LKj3OzZs7lz5w6KojBq\n1CiaNm3Kzz//XOAghTBm3Ry7cSDwAIuOLWL4puE8yHigdUh6l5UFH38MAwaolVi//lqSg1DlmiCW\nLFlC+fLl2bFjB6mpqaxcuZLp06cbIjYhNFGvcj0OBB4gMzuTNkvbcP7Wea1D0hsplyGeJ9cE8ahJ\n8tNPPzF06FCaNGmS55MHBgZia2uLi4uL7rmgoCDs7e3x8PDAw8ODbdv+LskcHByMo6MjTk5O7Nix\nIz8/hxBFqkyJMoT2C2WY2zBaLW7FznM7tQ6pyG3dCs2agbc37N4NdnZaRySMTa5jECNGjCA5OZk/\n//yTEydOkJWVRYcOHTh69GiuJ//1118pW7Ysw4YNIzY2FoCZM2dSrlw5Jk+e/MSxcXFxBAQEEB0d\nTVJSEp06deLMmTNPbU4kYxDC0Pae34v/9/682fJN3m7ztsmPS0i5jOJJL2MQS5cuJTg4mCNHjlCm\nTBkyMjJYtmxZnk7erl073Valj8spyM2bN+Pv74+NjQ0ODg7Ur1+fqKioPH2OEPrU3qE9UWOi2PTH\nJgZ8N4C7f93VOqQCO3sW2rRR/z1+XJKDeL5cE8TBgwdp2LAhFStWZNWqVXz88cdUqFC4uvpz587F\nzc2NUaNG6UqJJycnY29vrzvG3t6epKSkQn2OEEXFvrw9e0fspWqpqngu9uSP639oHVK+rVkDXl4w\nfDhs2iS1lETucl0oN27cOE6ePMmJEyf46quvGD16NMOGDWPv3r0F+sDx48fz/vvvA/Dee+8xZcoU\nlixZkuOxz2rKBwUF6R57e3vj7e1doFiEyI+S1iVZ0GsBi48t5qVlL7Gw10L6OPXROqxcSbmM4iki\nIoKIiIhCnSPXBGFtbY2FhQWbNm3i9ddfZ/To0c+8oedF9erVdY9Hjx5Nr169ALCzsyMxMVH32qVL\nl7B7xqjZ4wlCCEMb3XQ0rrauDFg3gOikaD7s8CFWlsa5IcLj5TKOHpVyGcXJP/94njlzZr7PkWsX\nU7ly5Zg1axarV6+mZ8+eZGVlkZGRke8PeuTy5cu6xxs3btTNcPL19SU8PJz09HQSEhKIj4/H09Oz\nwJ8jhD552nlyZOwRDlw6QM81PUl9kKp1SE9QFHVNQ6dO6oY+y5dLchD5l2sLYu3ataxZs4alS5dS\no0YNLl68yLRp0/J0cn9/f/bu3cv169epVasWM2fOJCIigpiYGCwsLKhbty4LFiwAwNnZGT8/P5yd\nnbG2tmb+/PkmP1tEmLfqZaqzc+hO3t75Ni0WtWCD3wbcarhpHdYT5TIOHJByGaLg8lRq4/z585w9\ne5ZOnTqRlpZGZmYm5cuXN0R8T5FprsIYhf8WzoRtE/imyzcMdh2sWRy//qoW15NyGeKf9FKLaeHC\nhSxatIjU1FTOnTvHmTNnGD9+PLt37y5UsAUlCUIYq5NXTtJvbT96NujJ5z6fY2NlY7DPvnRJXdvw\nyy+wYIGsiBZP08s6iG+//ZbIyEhdi6FBgwZcvXq1YBEKYcZcbV2JHhNNfGo8HVd2JOVeit4/My0N\nPvwQ3NygTh04fVqSgyg6uSaIkiVLUvKxdmpmZqaMDQjxDJVKVeIH/x94ue7LtFjUgkOXDunlcxQF\nwsLAyQlOnVJnKH38sQxEi6KV6yB1+/bt+eSTT0hLS2Pnzp3Mnz9fNzVVCPE0SwtLgryDaPZCM3zX\n+PJRh48Y22xskf1hdfgwTJoEGRlqkmhbPLeuEAaQ6xhEdnY2ixcv1hXP69KlC6NHj9asFSFjEMKU\nxN+Ip+/avrSyb8W87vP4l/W/Cnyux8cZPvkEhg0Dy1z7AIRQFfkgdWZmJk2aNOGPP4ynrIAkCGFq\n7qXfI3BzIAm3Evje73tqV6idr/enpcEXX8Ds2TB+PEyfLl1JIv+KfJDa2tqahg0bcuHChUIFJkRx\nVrZEWdYOWIufsx8tF7dkT8KePL1PxhmE1nLtYmrXrh3Hjx/H09OTMmXKqG+ysGDLli0GCfCfpAUh\nTNnuP3czeMNgprWexmSvyc/sqn18nOGbb2ScQRSeXtZBPCrK9/hhFhYWtG/fvgAhFp4kCGHqLty6\nQP91/alXuR5LfJdQtsTfTQIZZxD6UqQJ4sGDB/z3v//l7NmzuLq6EhgYiI2N4Rb+PIskCGEOHmY+\n5LWfXiOYgQM9AAAZIklEQVQ6OZqNr2yk5r/qyziD0KsiTRB+fn6UKFGCdu3asXXrVhwcHJg9e3aR\nBFoYkiCEuVAUhf8eWcD0nz+gxLalvGzfg08/BQcHrSMT5qhIE4SLi4tum9DMzExatGjB8ePHCx9l\nIUmCEObi0TjDzbIHudnRj9dajea99u9haSF9SqLoFeksJmtr6xwfCyEK59IlGDpULaj36qsQ97MX\nJ96IZlfCLnqH9+bWw1tahygE8JwEcfLkScqVK6f7io2N1T3WqpKrEKYsp7pJI0aog9A1ytZg97Dd\n1K1YlxaLWvDb1d+0DleIvJX7NibSxSRMjaKo+0FPn67uCZ3bOMOqE6uYvGMy87rN45UmrxgsTmHe\n9DLN1dhIghCmpKDrGY5fPk7/df3p16gfIZ1CsLaUbl5ROJIghDASRbGe4UbaDQI2BJCRlcHaAWup\nVqaafoIVxYJe9oMQQuTd88YZ8qtK6SpsDdiKl70XzRc150jykSKPV4jnkQQhRBHQV90kK0srPun4\nCd90+Ybuod1Zenxp0QQsRB5IF5MQhWSoukl/XP+Dvmv70r5Oe2Z3nU1Ja9lwWuSddDEJYUD/XM8Q\nFaXfonpOVZ04PPowV+9fxXuFN0l3kvT3YUIgCUKIfCvKcYb8Kl+yPOv91uPbwJcWi1qw78I+/X+o\nKLYkQQiRR8ayP4OlhSUz2s1gWe9lDPxuIHMOz5FuV6EXek0QgYGB2Nra4uLionsuNTUVHx8fGjRo\nQOfOnbl16++yAsHBwTg6OuLk5KTb4lQIY3D4MLRuDV99pSaJtWu1L6rXpX4XDo06xLKYZQzbNIy0\njDRtAxJmR68JYuTIkWzfvv2J50JCQvDx8eHMmTN07NiRkJAQAOLi4li7di1xcXFs376d1157jezs\nbH2GJ0SuDD3OkF91K9Vlf+B+AFovac2fN//UOCJhTvSaINq1a0elSpWeeG7Lli0MHz4cgOHDh7Np\n0yYANm/ejL+/PzY2Njg4OFC/fn2ioqL0GZ4Qz6TlOEN+lbYpzco+KxnlMQqvJV6EngyVLidRJAz+\n637lyhVsbW0BsLW15cqVKwAkJydjb2+vO87e3p6kJJmlIQzr8XGGuDjT2QfawsKCCS0n8IP/D3x+\n4HM6r+5M/I14rcMSJk7TAi8WFhbP3JP30es5CQoK0j329vbG29u7iCMTxdHj6xnCwoyrKymvPO08\nOTL2CHMOz8FriRcTPCcwve10WTNRDEVERBAREVGocxg8Qdja2pKSkkKNGjW4fPky1atXB8DOzo7E\nxETdcZcuXcLOzi7HczyeIIQorMfrJs2apY45GGNXUl5ZW1oz2WsyA50H8ub2N3H9ryvzu8+n44sd\ntQ5NGNA//3ieOXNmvs9h8P8Gvr6+rFixAoAVK1bQp08f3fPh4eGkp6eTkJBAfHw8np6ehg5PFCM5\njTMMH27ayeFxtSrUYuMrG/nc53MCtwQyZMMQrty7onVYwoTo9b+Cv78/rVu35vTp09SqVYtly5Yx\nffp0du7cSYMGDfjll1+YPn06AM7Ozvj5+eHs7Ey3bt2YP3/+c7ufhCiof44zHDtmGuMMBeXb0JdT\nr52iZrmauPyfCwuOLCBbkRmCIndSi0kUK4aqm2SsTl45ybgfx6GgsKDnAlxtXbUOSRiI1GIS4hke\nX88wbpzxrWcwFFdbVyIDIwl0D6TTyk5M2zGNe+n3tA5LGClJEMKsmfs4Q0FYWlgyptkYfnvtN67c\nv0Lj+Y3ZcnqL1mEJIyRdTMIsPb4PdOvW6j7QdepoHZVx+iXhF8b/NJ5GVRsxp9scaleorXVIQg+k\ni0kInq6bFB4uyeF5Xq77MifHnaTpC01puqApXx74koysDK3DEkZAWhDCbJjbegYtxN+I57Wtr3H1\n/lUW9FxAK/tWWockioi0IESxJOMMRcexiiM7huxgepvp9Fvbj3E/juPmg5tahyU0Iv+FhMm6cUNt\nKdSvr+7PYO7rGQzFwsICfxd/4l6Pw9LCEuf5zlIAsJiSLiZhcuLj1TUMa9ZAnz7w1lvw2JYjoogd\nvnSYV398laqlqzK/x3waVGmgdUiiAKSLSZgtRYF9+9SE0Lo1VKqkroJeulSSg761tG/JkbFH6OHY\ng9ZLWjMzYiYPMx9qHZYwAGlBCKOWkQHr16szkm7fVlsLw4dD6dJaR1Y8Jd5O5M3tbxJ3LU4KAJqY\ngtw7JUEIo3T7NixeDLNnQ926MGUK9OwpA8/GYsvpLby57U3a1m7Ll52/xLasrdYhiVxIF5MweefP\nw+TJalI4ehQ2bIC9e8HXV5KDMZECgMWDtCCEUYiKgi+/hF27IDAQ3nwTatXSOiqRF48XAPxvj//i\nVsNN65BEDqSLSZiUrCzYskVNDJcuqVVWAwOhfHmtIxP5la1ks+TYEt795V2GuQ0jyDuIsiVkvrEx\nkQQhTMK9e7B8uTpVtWpVdXyhb1+w1nQDXFEUrt6/ytQdU9l7YS9zus6ht1NvrUMS/yMJQhi15GSY\nOxcWLYL27dXE4OUFsi+U+ZECgMZHBqmFUYqJgWHDoEkTuH9fLab3/ffqegZJDuZJCgCaB2lBCL3I\nzobt29XxhdOnYcIEGDtWXeAmihcpAGgcpItJaO7BA1i9Gr7+GkqWVLuR/PygRAmtIxNaUhSF8N/C\nmbJjCr4NfQnuGEylUvLXgiFJF5PQzNWrEBQEDg6weTPMm6cWzxsyRJKDkAKApkpaEKJQfv9dLYOx\nfr3aUpg0CRo10joqYeykAKDhSQtCGISiwO7d0L07eHuDvT2cOQMLFkhyEHkjBQBNg7QgRJ6lp6vb\nd371lfp48mS1C+lf/9I6MmHKEm8nMnH7RH67+hv/1+P/pACgnpjUILWDgwPly5fHysoKGxsboqKi\nSE1N5ZVXXuHChQs4ODiwbt06Klas+GTAkiAMLjVVbR3Mm6e2EKZMgS5dpDaSKFo/nP6BCdsmSAFA\nPTGpLiYLCwsiIiI4fvw4UVFRAISEhODj48OZM2fo2LEjISEhWoUngLNn4Y03oF49+OMP2LpVrZXU\nrZskB1H0ejXsJQUAjYxmLYi6dety5MgRqlSponvOycmJvXv3YmtrS0pKCt7e3vzxxx9PvE9aEPql\nKLB/v9qN9OuvMGaMmiRq1tQ6MlGcxF6J5dUfX5UCgEXIpLqYXnzxRSpUqICVlRWvvvoqY8aMoVKl\nSty8qW6QrigKlStX1n2vC1gShF5kZqqrm7/6St3r+a23YMQIKFNG68hEcSUFAItWQe6dmpVH279/\nPy+88ALXrl3Dx8cHJyenJ163sLDA4hl1GIKCgnSPvb298fb21mOk5u3Onb835qldG2bMgF69wMpK\n68hEcWdpYcmYZmPo7dSbqTum0nh+YykAmA8RERFEREQU6hxGMYtp5syZlC1blkWLFhEREUGNGjW4\nfPkyHTp0kC4mPbl4EebMgWXLwMdHnZHk6al1VEI8mxQALByTGaROS0vj7t27ANy/f58dO3bg4uKC\nr68vK1asAGDFihX06dNHi/DMWnQ0+PuDh4c63nDsmDp1VZKDMHaPCgA2e6EZTRc05YsDX0gBQD3T\npAWRkJBA3759AcjMzGTw4MHMmDGD1NRU/Pz8uHjxokxzLUJZWfDDD+r4woULMHEijBoFFSpoHZkQ\nBSMFAPPPpAapC0oSRN7dvw8rVqiF8ypWVNcvDBggG/MI8yAFAPPHZLqYhH5dvgzvvqsWztu5E5Yu\nVfd8HjRIkoMwH1IAUP+kBWFGTp5Uu5E2b4aAALVwnqOj1lEJYRiHLx1m3E/jqFKqihQAzIG0IIoh\nRVE35vHxga5doUEDdQX0t99KchDFS0v7lkSPidYVAAyKCOLmg5u5v1E8k7QgTNTDhxAaqrYYrKzU\n8YVBg9RNeoQo7hJvJzJj9wx+OPMDHRw6EOASQK8GvShlU0rr0DQjg9RmLj1dLbP93XdqN5Knp5oY\nOnaUvZ2FyMnth7fZ+MdGwmLDiE6OxrehLwFNAuj4YkesLYvXgJwkCDP0z6TQsKG6MU///lCrltbR\nCWE6Uu6lsO7UOkJjQzl/6zx+zn4Mdh1MS7uWz6zaYE4kQZgJSQpC6NfZ1LOsiV1DaGwo6VnpBLgE\nEOASgHM1Z61D0xtJECZMkoIQhqcoCsdTjhMWG8aa39ZQrXQ1BrsMZlCTQdSqYF7/8SRBmBhJCkIY\nj6zsLH69+CthsWF8//v3NKnehIAmAQxsPJDKpSprHV6hSYIwAZIUhDB+f2X+xfaz2wn7LYztZ7fT\nvk573UyoMiVMswa+JAgjJUlBCNN196+7bPpjE6GxoRy6dIieDXoy2GUwnV7shI2Vjdbh5ZkkCCMi\nSUEI83Pl3hW+i/uOsNgwzqaeZaDzQAJcAvCq5YWlhXGvO5YEoTFJCkIUH3/e/FM3EyotI003E6pJ\n9SZah5YjSRAakKQgRPGmKAonr5zUzYSq+K+KuplQdSrW0To8HUkQBiJJQQiRk2wlm8iLkYTFhrE+\nbj2NqjXSzYSqWrqqprFJgtAjSQpCiPxIz0rn57M/E/ZbGFvjt9KudjsCXALwbehL2RJlDR6PJIgi\nJklBCFEU7qXfY/Mfmwn7LYz9F/fT3bE7AS4BdKnXxWAzoSRBFAFJCkIIfbp2/5puJtTpG6cZ0GgA\nAS4BtKndRq8zoSRBFJAkBSGEFs7fOk/4b+GExoZy5687+DfxJ8AlAJfqLkVeQFASRD5IUhBCGJPY\nK7GExYYR9lsY5UqUI8AlAP8m/tStVLdIzi8JIheSFIQQxi5byeZg4kFCY0P5Lu47GlRpoJsJVb1M\n9QKfVxJEDiQpCCFMVUZWBjv/3ElYbBg/nvkRr1peDHYZTO+GvSlXsly+zmUWCWL79u1MmjSJrKws\nRo8ezdtvv/3E63n5ISUpCCHMzf30+2w5vYWw38LYd2Ef3ep3I8AlgK71u1LCqkSu7zf5BJGVlUXD\nhg3ZtWsXdnZ2tGjRgjVr1tCoUSPdMc/6IYtjUoiIiMDb21vrMIyCXIu/ybX4m7leixtpN1gft57Q\n2FDirsXRv1F/AlwCaFen3TNnQhUkQRhVdamoqCjq16+Pg4MDNjY2DBo0iM2bNz/z+PR02LYNAgPh\nhRfgo4/A1RViYuDAAZg0yXyTA6i//EIl1+Jvci3+Zq7XokrpKrza/FX2jdzHsVePUa9yPSZun0id\nb+owbcc0YlJiimQyj1EliKSkJGo9dke3t7cnKSnpqeOKc1IQQojH1a5Qm3+3+Tcx42LYPng7JaxK\n0HdtXxrPb8zH+z7mXOq5Ap/bugjjLLS8zvv96CO1+2jmTEkGQgjxSOPqjfmk4yd8/PLHHLp0iLDY\nMFovbU3digWcKqsYkYMHDypdunTRfT9r1iwlJCTkiWPq1aunAPIlX/IlX/KVj6969erl+55sVIPU\nmZmZNGzYkN27d1OzZk08PT2fGqQWQghhGEbVxWRtbc28efPo0qULWVlZjBo1SpKDEEJoxKhaEEII\nIYyHUc1ietz27dtxcnLC0dGRTz/9NMdj3nzzTRwdHXFzc+P48eMGjtBwcrsWoaGhuLm54erqSps2\nbTh58qQGUepfXn4nAKKjo7G2tmbDhg0GjM6w8nItIiIi8PDwoEmTJma5FuCR3K7F9evX6dq1K+7u\n7jRp0oTly5cbPkgDCQwMxNbWFhcXl2cek6/7ZqFGlfUkMzNTqVevnpKQkKCkp6crbm5uSlxc3BPH\n/PTTT0q3bt0URVGUQ4cOKS1bttQiVL3Ly7U4cOCAcuvWLUVRFGXbtm1meS3ych0eHdehQwelR48e\nyvr16zWIVP/yci1u3rypODs7K4mJiYqiKMq1a9e0CFXv8nItPvjgA2X69OmKoqjXoXLlykpGRoYW\n4erdvn37lGPHjilNmjTJ8fX83jeNsgWRlwVzW7ZsYfjw4QC0bNmSW7duceXKFS3C1au8XAsvLy8q\nVKgAqNfi0qVLWoSqV3ldRDl37lwGDBhAtWrVNIjSMPJyLcLCwujfvz/29vYAVK2q7XaX+pKXa/HC\nCy9w584dAO7cuUOVKlWwtjaq4dci065dOypVqvTM1/N73zTKBJGXBXM5HWOON8a8Lh58ZMmSJXTv\n3t0QoRlUXn8nNm/ezPjx44G8r6sxNXm5FvHx8aSmptKhQweaN2/OqlWrDB2mQeTlWowZM4ZTp05R\ns2ZN3NzcmD17tqHDNBr5vW8aZRrN639s5R/j6+Z4Q8jPz7Rnzx6WLl3K/v379RiRNvJyHSZNmkRI\nSIiu5sw/fz/MRV6uRUZGBseOHWP37t2kpaXh5eVFq1atcHR0NECEhpOXazFr1izc3d2JiIjg3Llz\n+Pj4cOLECcqVy181VHORn/umUSYIOzs7EhMTdd8nJibqmsrPOubSpUvY2dkZLEZDycu1ADh58iRj\nxoxh+/btz21imqq8XIejR48yaNAgQB2Y3LZtGzY2Nvj6+ho0Vn3Ly7WoVasWVatWpVSpUpQqVYqX\nXnqJEydOmF2CyMu1OHDgAO+++y4A9erVo27dupw+fZrmzZsbNFZjkO/7ZpGOkBSRjIwM5cUXX1QS\nEhKUv/76K9dB6oMHD5rlwKyi5O1aXLhwQalXr55y8OBBjaLUv7xch8eNGDFC+f777w0YoeHk5Vr8\n/vvvSseOHZXMzEzl/v37SpMmTZRTp05pFLH+5OVavPXWW0pQUJCiKIqSkpKi2NnZKTdu3NAiXINI\nSEjI0yB1Xu6bRtmCeNaCuQULFgDw6quv0r17d7Zu3Ur9+vUpU6YMy5Yt0zhq/cjLtfjwww+5efOm\nru/dxsaGqKgoLcMucnm5DsVFXq6Fk5MTXbt2xdXVFUtLS8aMGYOzs7PGkRe9vFyLd955h5EjR+Lm\n5kZ2djafffYZlStX1jhy/fD392fv3r1cv36dWrVqMXPmTDIyMoCC3TdloZwQQogcGeUsJiGEENqT\nBCGEECJHkiCEEELkSBKEEEKIHEmCEEIIkSNJEEIIIXIkCUKYHEtLS4YOHar7PjMzk2rVqtGrV6/n\nvm/58uVMmDAhX5/l7+9fZPV7Zs2a9cT3bdq0KfQ5hdAnSRDC5JQpU4ZTp07x8OFDAHbu3Im9vX2u\ndXnyW6srJSWFI0eOcOLECSZOnPjEa1lZWfkLGggODn7ie3OsmSXMiyQIYZK6d+/OTz/9BMCaNWvw\n9/fXFSFLTU2lT58+uLm54eXlRWxs7FPvv3btGgMGDMDT0xNPT08OHDjw1DGdO3cmKSkJDw8PIiMj\n8fb25q233qJFixbMnj2bH3/8kVatWtG0aVN8fHy4evUqAPfu3WPkyJG4urri5ubGhg0bmDFjBg8e\nPMDDw0PX+ilbtiygFk+bNm0aLi4uuLq6sm7dOkDd8Mfb25uBAwfSqFEjhgwZ8lSMmZmZeHp6snfv\nXgBmzJjBf/7zH0DdSKdZs2a4u7vTqVOnQl1vUUwVaREQIQygbNmyysmTJ5UBAwYoDx8+VNzd3ZWI\niAilZ8+eiqIoyhtvvKF8+OGHiqIoyi+//KK4u7sriqIoy5YtU9544w1FURTF399fiYyMVBRFrWXV\nqFGjpz7n/PnzT9S08fb2Vl5//XXd9zdv3tQ9XrRokTJlyhRFURTl3//+t/LWW289dVzZsmWf+jkU\nRVHWr1+v+Pj4KNnZ2cqVK1eU2rVrK5cvX1b27NmjVKhQQUlKSlKys7MVLy8vXcyPO3XqlNKoUSNl\n586dioeHh5KRkaFcvXpVqVWrlnL+/PmnYhUir4yyFpMQuXFxceH8+fOsWbOGHj16PPHa/v37dduN\ndujQgRs3bnD37t0njtm1axe///677vu7d++SlpZG6dKldc8pOVSheeWVV3SPExMT8fPzIyUlhfT0\ndF588UUAdu/ezdq1a3XHVaxY8bk/S2RkJAEBAVhYWFC9enXat29PdHQ05cuXx9PTk5o1awLg7u7O\n+fPnnxq7cHZ2ZsiQIfTq1YtDhw5hbW3NoUOHaN++PXXq1MlTDELkRBKEMFm+vr5MnTqVvXv3cu3a\ntSde++fN/Z/jD4qicPjwYUqUKJGvzyxTpozu8YQJE5g6dSo9e/Zk7969BAUFPfPzn+fR/hU5xVuy\nZEndc1ZWVmRmZuZ4jtjYWCpVqqTbHSyncwqRXzIGIUxWYGAgQUFBNG7c+Inn27VrR2hoKKD241er\nVk3X3/9I586dmTNnju77mJiYPH3m4zfdO3fu6P66X758ue55Hx8fvv32W933t27dAtQquznd4Nu1\na8fatWvJzs7m2rVr7Nu3D09Pzzzf4Dds2MCtW7fYu3cvEyZM4Pbt27Rs2ZJ9+/Zx/vx5QB2XESK/\nJEEIk/Por2s7OzveeOMN3XOPng8KCuLo0aO4ubnxzjvvsGLFiqeOmTNnDkeOHMHNzY3GjRuzcOHC\n535WTt8HBQUxcOBAmjdvTrVq1XSv/ec//+HmzZu4uLjodjIDGDt2LK6urrpB6kfH9+3bVzeg3bFj\nRz7//HOqV6/+RLzPiuf69evMmDGDxYsX4+joyBtvvMHEiROpVq0aCxcupF+/fri7u+Pv75+PKyyE\nSsp9CyGEyJG0IIQQQuRIEoQQQogcSYIQQgiRI0kQQgghciQJQgghRI4kQQghhMiRJAghhBA5kgQh\nhBAiR/8PUIILe33jvscAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x6121270>"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E4 - Pg 123"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate if required concentration can be maintained under normal conditions.\n",
      "#Initialization of variables\n",
      "import math\n",
      "C=4/1000. #g/L\n",
      "MO2=32. #g/mol\n",
      "Mw=18.\n",
      "w=1 #L\n",
      "K=3.3*math.pow(10,7) #torr\n",
      "patm=0.21*760 #torr\n",
      "#calculations\n",
      "nO2=C/MO2\n",
      "nH2O=w*1000. /Mw\n",
      "xO2=nO2/(nO2+nH2O)\n",
      "pO2=xO2*K\n",
      "if(pO2<patm):\n",
      "    print '%s %.1e' %('The required concentration can be maintained under normal conditions and pressure is (Torr)',pO2)\n",
      "else:\n",
      "    print '%s %.e' %('The required concentration cannot be maintained under normal conditions and pressure is (Torr)',pO2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required concentration can be maintained under normal conditions and pressure is (Torr) 7.4e+01\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E5 - Pg 131"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate the molar mass of the enzyme\n",
      "#Initialization of variables\n",
      "%pylab inline\n",
      "import numpy as np\n",
      "from numpy import linalg\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "c=([1, 2, 4, 7, 9])\n",
      "hbyc=([0.28, 0.36, 0.503, 0.739, 0.889])\n",
      "R=8.3145 #J/K mol\n",
      "T=298 #K\n",
      "g=9.81 #m/s^2\n",
      "d=0.9998 #g/cm^3\n",
      "#calculations\n",
      "pyplot.plot(c,hbyc)\n",
      "pyplot.xlabel('c')\n",
      "pyplot.ylabel('hbyc')\n",
      "A = np.vstack([c, np.ones(len(c))]).T\n",
      "vector=numpy.linalg.lstsq(A,hbyc)\n",
      "intercept=vector[0]\n",
      "intercept1=intercept[1]/100.\n",
      "M=R*T/(d*g*intercept1)/1000.\n",
      "#results\n",
      "print '%s %d %s' %('Molar mass of the enzyme is close to',M,'kDa')\n",
      "print '%s' %('The answer is a bit different in the textbook due to rounding off error in the textbook')\n",
      "pyplot.show()\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n",
        "Molar mass of the enzyme is close to 123 kDa"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The answer is a bit different in the textbook due to rounding off error in the textbook\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEPCAYAAACk43iMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1UVXW+x/H3UbiVY2k+VCMwCxWSoxBgkGaaaBZaaT7V\noNmDksPkWNk0M5Y1N+xOmnVbZVFdbktrWYZUWmQP1KU6o/mEiqEjPmBXJiSzEUUUVOSw7x87uSGP\n6tnsczif11qs4Qw/Dt8Wsj/7992//dsOwzAMRETEL7WzuwAREbGPQkBExI8pBERE/JhCQETEjykE\nRET8mEJARMSPWRoC2dnZREREEB4ezoIFC+p9/fDhw4wbN47o6GgGDBjA9u3brSxHRETOYFkIuN1u\nZs6cSXZ2NgUFBWRkZLBjx446Y+bNm0f//v3Jz89nyZIlPPTQQ1aVIyIiDbAsBHJzcwkLCyM0NJTA\nwECSkpLIysqqM2bHjh0MGzYMgD59+lBUVMS//vUvq0oSEZEzWBYCJSUlhISE1L4ODg6mpKSkzpjo\n6GhWrFgBmKHxz3/+k3379llVkoiInMGyEHA4HM2OefTRRykrKyM2Npa0tDRiY2Np3769VSWJiMgZ\nAqx646CgIIqLi2tfFxcXExwcXGfMxRdfzOLFi2tf9+zZk169etV7r7CwML777jurShURaZN69+7N\nnj17mh5kWOTUqVNGr169jL179xonT540oqOjjYKCgjpjysrKjJMnTxqGYRj//d//bdxzzz0NvpeF\nZXrUk08+aXcJLaI6PccXajQM1elpvlJnS46dls0EAgICSEtLIzExEbfbTXJyMk6nk/T0dABSUlIo\nKCjg3nvvxeFwEBkZyaJFi6wqR0TEbxgG/Hy5tVmWhQDAqFGjGDVqVJ3/LyUlpfbza6+9ll27dllZ\ngoiIX8nLg4cfhrKylo3XHcMelJCQYHcJLaI6PccXagTV6WneWOePP0JyMtxyC0yZYoZBSzh+7ht5\nNYfDgQ+UKSLS6k6cgBdegOefN0Ngzhzo1Mn8WkuOnZa2g0RExBqGAcuXw5//DLGxsGED9O599u+j\nEBAR8TGn+/5HjsDixfDzxgvnRNcERER8xJl9/82bzy8AQCEgIuL1TpyA+fMhMhK6dYOdO2H6dPDE\nBgtqB4mIeClP9f2bohAQEfFCnuz7N0XtIBERL2JF378pCgERES9gZd+/KWoHiYjYqDX6/k1RCIiI\n2KS1+v5NUTtIRKSVtXbfvykKARGRVmJX378pageJiFjM7r5/UxQCIiIW8oa+f1PUDhIRsYA39f2b\nohAQEfEgb+z7N0XtIBERD/Dmvn9TFAIiIufJ2/v+TVE7SETkHPlK378pCgERkbPka33/pqgdJCLS\nQr7a92+KpTOB7OxsIiIiCA8PZ8GCBfW+fvDgQUaOHElMTAyRkZG8+eabVpYjInLO8vIgIQH+9jez\n779ihe8HAIDDMAzDijd2u9306dOHnJwcgoKCiI+PJyMjA6fTWTsmNTWVkydPMn/+fA4ePEifPn04\ncOAAAQF1JygOhwOLyhQRadKPP8Ljj8Onn8JTT8G0ab7T9mnJsdOymUBubi5hYWGEhoYSGBhIUlIS\nWVlZdcb8+te/pry8HIDy8nK6du1aLwBEROzQlvr+TbHsiFtSUkJISEjt6+DgYDZs2FBnzPTp0xk+\nfDg9evTg6NGjvPvuu1aVIyLSIm2x798Uy0LA4XA0O2bevHnExMTgcrn47rvvuPHGG8nPz+fiiy+u\nNzY1NbX284SEBBISEjxYrYiIb6/3B3C5XLhcrrP6HstCICgoiOLi4trXxcXFBAcH1xmzdu1aHn/8\ncQB69+5Nz5492bVrF3FxcfXe75chICLiSb7c9/+lM0+Q586d2+z3WHZNIC4ujsLCQoqKiqiqqiIz\nM5MxY8bUGRMREUFOTg4ABw4cYNeuXfTq1cuqkkRE6vCXvn9TLJsJBAQEkJaWRmJiIm63m+TkZJxO\nJ+np6QCkpKQwZ84cpk6dSnR0NDU1NTz77LN06dLFqpJERAD/6/s3xbIlop6kJaIi4im/7Pu/8ILv\n9f3Phq1LREVEvElb2OfHCgoBEWnT1Pdvmu7MEpE2SX3/llEIiEibk5cHs2ZBeblvrvdvTWoHiUib\nsX+/ucb/llvgrrvU928JhYCI+LzTff+oKOjeXX3/s6F2kIj4LMOA99+Hv/xFff9zpRAQEZ+kvr9n\nqB0kIj5FfX/PUgiIiE9Q398aageJiFdT399aCgER8Vrq+1tP7SAR8Trq+7cehYCIeA31/Vuf2kEi\nYjvDgA8+gEceUd+/tSkERMRWu3fDAw/Avn2waBEMH253Rf5F7SARsUVFBcyZA4MGQWIifPutAsAO\nCgERaVWnt3h2OuGf/4StW+GPf4TAQLsr809qB4lIq9m1y2z9/PADvPUWDB1qd0WimYCIWK6iAh57\nDK67DkaNgi1bFADeQiEgIpY5fbev0wnFxbBtm/mQd7V+vIfaQSJiiZ07zdbPjz+q9ePNNBMQEY86\ndgwefRQGDzbv+M3LUwB4M0tDIDs7m4iICMLDw1mwYEG9r//nf/4nsbGxxMbGEhUVRUBAAGVlZVaW\nJCIWMQx47z3o2xdKSszWz6xZav14O4dhGIYVb+x2u+nTpw85OTkEBQURHx9PRkYGTqezwfEff/wx\nL774Ijk5OfWLdDiwqEwR8YDTrZ8DByAtDa6/3u6KBFp27LRsJpCbm0tYWBihoaEEBgaSlJREVlZW\no+PfeecdJk2aZFU5ImKBY8dg9mwYMgRuvdVs/SgAfItlIVBSUkJISEjt6+DgYEpKShocW1lZyeef\nf86ECROsKkdEPMgw4N13zVU/+/ebrZ+HHoIALTXxOZb9yhwOR4vHrly5ksGDB9O5c+dGx6SmptZ+\nnpCQQEJCwnlUJyLnascOs/Xz00/wzjvmLEC8g8vlwuVyndX3WBYCQUFBFBcX174uLi4mODi4wbHL\nli1rthX0yxAQkdZ37Bj8x3+YD3d54gn4wx905u9tzjxBnjt3brPfY1k7KC4ujsLCQoqKiqiqqiIz\nM5MxY8bUG3fkyBFWrVrFbbfdZlUpInIe1Ppp2yz7NQYEBJCWlkZiYiJut5vk5GScTifp6ekApKSk\nAPDhhx+SmJjIRRddZFUpInKOduyAmTPhX/9S66etsmyJqCdpiahI6zp61Gz9vPEG/PWvMGOGzvx9\nka1LREXE9xgGZGaarZ8DB8zWz4MPKgDaMv1qRQSAggJz1c/Bg7Bsmbntg7R9mgmI+LmjR+HPfzb3\n9xk7FjZvVgD4E4WAiJ8yDPOM3+k0L/z+4x/mTECtH/+iX7eIH9q+3TzgHzpkXgO47jq7KxK7aCYg\n4keOHoU//QkSEmD8eNi0SQHg7xQCIn7AMCAjw2z9lJaarZ+ZM9X6EbWDRNq87dvNA35ZmXnn76BB\ndlck3kQzAZE26petnwkTYONGBYDUpxAQaWNOt34iIszWz+mZgFo/0hD9sxBpQ7ZvN3f3PHLEfNSj\nzvylOZoJiLQB5eXwyCMwbBjcfru56kcBIC2hEBDxYYYBS5eaq37KysxVP3/4A7Rvb3dl4ivUDhLx\nUacP+EePwvvvw7XX2l2R+CLNBER8THk5/PGPMHw4/Pa35qofBYCcK4WAiI/4ZevnyBHzIvCMGWr9\nyPlRO0jEB2zbZi7zVOtHPE0zAREvduQIPPww3HADJCWp9SOepxAQ8UKGAW+/bbZ+jh41Wz/336/W\nj3ie2kEiXmbbNnPVT0UFrFgBAwfaXZG0ZZoJiHiJI0dg1iyz9TNpEuTmKgDEegoBEZsZBrz1ltn6\nqagwn/Wr1o+0FrWDRGy0davZ+jl+HD74AAYMsLsi8TeWzgSys7OJiIggPDycBQsWNDjG5XIRGxtL\nZGQkCQkJVpYj4jWOHIGHHoIRI2DKFNiwQQEg9nAYhmFY8cZut5s+ffqQk5NDUFAQ8fHxZGRk4HQ6\na8eUlZVx3XXX8fnnnxMcHMzBgwfp1q1b/SIdDiwqU6RVnW79PPoo3HorzJsHDfyTF/GIlhw7LWsH\n5ebmEhYWRmhoKABJSUlkZWXVCYF33nmHCRMmEBwcDNBgAIi0Ffn55g1fJ07Ahx/CNdfYXZGIhe2g\nkpISQkJCal8HBwdTUlJSZ0xhYSGHDh1i2LBhxMXF8dZbb1lVjohtysrM1s+NN5qtn/XrFQDiPSyb\nCTgcjmbHnDp1iry8PL788ksqKyu59tprGThwIOHh4fXGpqam1n6ekJCg6wfi9U63fmbPhtGjzVU/\nmuyKlVwuFy6X66y+x7IQCAoKori4uPZ1cXFxbdvntJCQELp168ZFF13ERRddxPXXX09+fn6zISDi\n7fLzzVU/J09CVpbO/KV1nHmCPHfu3Ga/x7J2UFxcHIWFhRQVFVFVVUVmZiZjxoypM+a2227jm2++\nwe12U1lZyYYNG+jbt69VJYlYrqwMHnwQbroJ7r5brR/xfpbNBAICAkhLSyMxMRG3201ycjJOp5P0\n9HQAUlJSiIiIYOTIkVx11VW0a9eO6dOnKwTEJ9XU/P+qnzFjzNZP1652VyXSPMuWiHqSloiKN/v2\nW7P1c+oUvPIKxMfbXZGIqSXHTm0bIXKOysrggQcgMRHuvdds/SgAxNc0GwLr1q2jvLy89nV5eTkb\nNmywtCgRb1ZTA2++ae71c+qU2fqZPh3a6ZRKfFCz7aCYmBjy8vJo9/O/cLfbTVxcHFu2bGmVAkHt\nIPEeW7aYrZ/qanj1VYiLs7sikcZ5rB3U7henOO3bt8ftdp9fZSI+5vBh827fkSNh2jSz9aMAkLag\n2RDo2bMnL730EqdOnaKqqoqFCxfSq1ev1qhNxHY1NfDGG9C3L7jdZuvnvvvU+pG2o9l20IEDB3jw\nwQf5+uuvAbjhhhtYuHAhl112WasUCGoHiT1Ot37cbnPVj878xde05NjZbAiUlpbS1eYFzwoBaU2H\nD8MTT8D778PTT5vtH535iy/yyDWBgQMHcvvtt/Ppp5/qQCxtWk0NLF5srvqpqYEdO9T6kbav2ZlA\nTU0NOTk5LF68mI0bN3LHHXcwdepUrrzyytaqUTMBsVxentn6MQxIS1PrR9oGj7SDfumrr75iypQp\nVFRUEBMTw/z58xk0aNB5F9ochYBY5XTrZ/lys/UzdarO/KXt8MhDZQ4ePMjSpUtZsmQJl19+OWlp\naYwePZr8/HwmTpxIUVGRp+oVaTWnb/iaMwfGjzdX/XTpYndVIq2v2RAYNGgQU6ZMISsrq85W0HFx\ncfz+97+3tDgRK+TlwYwZ5ueffAJXX21vPSJ2atE1gXbt2lFeXo7D4eDiiy9urdpqqR0knnDokNn6\nWbHCfLbvvfeq9SNtm0dWB23evJmoqCiioqKIjIwkOjqaTZs2eaxIEavV1MCiReYNXw6H2frRsk8R\nU7MzgaioKF599VWGDBkCwDfffMOMGTPYunVrqxQImgnIudu82Vz143CYN3z17293RSKtxyMzgYCA\ngNoAABg8eDABAZY9i0bEIw4dgvvvh1tugZQUWLNGASDSkEaP5ps3bwZg6NChpKSkMGnSJAAyMzMZ\nOnRo61QncpZO3/D1+ONw++3mDV+XXmp3VSLeq9F2UEJCAg6Ho9FvPL2XUGtQO0haYtMms/XTvr3Z\n+omNtbsiEXud130CLpcLgBMnTrB8+XKKioqorq72aIEinlBaap75f/ghzJ8P99yji74iLdXsn8pt\nt93GRx99RGBgIB07dqz9ELFbTQ28/rq56icw0Gz96I5fkbPT7BXekpISPv/889aoRaTFTrd+AgLg\n888hJsbuikR8U7PnTIMGDWrV5aAiTSkthd//HkaPNlf/rF6tABA5H43OBKKiogDzmcJvvPEGPXv2\n5IILLgDMiw0KBmlNp2/4euIJuOMOs/XTubPdVYn4vkZDYOXKlef95tnZ2cyaNQu32819993H7Nmz\n63zd5XJx22231T6ucsKECTzxxBPn/XOlbdm40Wz9BAaq9SPiaY2GQGho6Hm9sdvtZubMmeTk5BAU\nFER8fDxjxozB6XTWGTd06FA++uij8/pZ0jaVlpq7fH70ETzzDNx1ly76iniaZX9Subm5hIWFERoa\nSmBgIElJSWRlZdUbp/X/cia3G9LTzVU/F1xgtn607FPEGpb9WZWUlBASElL7Ojg4mJKSkjpjHA4H\na9euJTo6mptvvpmCggKryhEfYBjw8ccQHQ3vvGO2fl56Sb1/EStZtglQU3cbn9a/f3+Ki4vp0KED\nn332GWPHjmX37t0Njk1NTa39PCEhgYSEBA9VKt4gNxf+/Gc4eNBs/dx6q7npm4i0nMvlqr3Rt6XO\n6vGSZ2P9+vWkpqaSnZ0NwPz582nXrl29i8O/1LNnTzZv3kyXMx7xpG0j2q49e8y+/5o1MHeuuce/\n9icU8QyP7CJ6ruLi4igsLKSoqIiqqioyMzMZM2ZMnTEHDhyoLTA3NxfDMOoFgLRNP/0EDzwAAwea\n7Z/du+G++xQAIq3Nsj+5gIAA0tLSSExMxO12k5ycjNPpJD09HYCUlBTef/99XnvtNQICAujQoQPL\nli2zqhzxEhUV8MIL8OKLMHmyedG3e3e7qxLxX5a1gzxJ7SDfV10Nb7wBqakweDA8/TSEhdldlUjb\ndl67iIp4gmHAypXw6KNw2WXwwQdwzTV2VyUipykExDLr15srfg4fhueeg5tv1oofEW+j22/E43bv\nhokTzY+pUyE/33zMowJAxPsoBMRjDhww9/gZNAiuvtoMg2nTzCd9iYh3UgjIeTt2DJ566v8f7rJz\nJzz2GHToYHdlItIchYCcs+pqc4+fK680D/wbN5pLP7t1s7syEWkpXRiWs2YYkJVlrvjp0cPc5TMu\nzu6qRORcKATkrKxda674OXrUvOlr5Ehd8BXxZWoHSYvs2gXjx0NSEkyfDlu2wKhRCgARX6cQkCb9\n+KP5LN/Bg2HAADMM7r1XK35E2gqFgDTo2DFzi4d+/cxVPjt3wuzZcNFFdlcmIp6kEJA6Tp2C116D\n8HBzm+fNm+H556FrV7srExEr6MKwAOaKnw8+MNf3h4TAJ59A//52VyUiVlMICGvWmCt+KivNxzne\ndJMu+Ir4C4WAH9u501zrv2UL/O1vcOedepi7iL/Rn7wf2r8fUlJgyBBz1c+uXXDXXQoAEX+kP3s/\ncvQo/Pu/Q2QkXHKJefD/05/gwgvtrkxE7KIQ8AOnTsErr5h7/BQVQV6eub+/HucsIrom0IYZBixf\nbq746dULPvsMYmLsrkpEvIlCoI1atQr+8hc4eRJefRVuvNHuikTEGykE2piCAnPFz9at5oqfyZN1\nwVdEGqfDQxvxww/mxm4JCTB0qLn8c8oUBYCINE2HCB9XXg5PPAFRUXDppeaKn0ce0YofEWkZS0Mg\nOzubiIgIwsPDWbBgQaPjNm7cSEBAACtWrLCynDalqgpeftnc42ffPvOGr2efNYNARKSlLLsm4Ha7\nmTlzJjk5OQQFBREfH8+YMWNwOp31xs2ePZuRI0diGIZV5bQZhgHvvQdz5pgB8MUXEB1td1Ui4qss\nC4Hc3FzCwsIIDQ0FICkpiaysrHoh8PLLLzNx4kQ2btxoVSlthstlrvhxu81n+95wg90ViYivs6wd\nVFJSQkhISO3r4OBgSkpK6o3Jysri/vvvB8ChXcsa9I9/wK23wtSpMGuW+UB3BYCIeIJlM4GWHNBn\nzZrFM888g8PhwDCMJttBqamptZ8nJCSQkJDggSq927598OSTsHKlecPX8uVwwQV2VyUi3srlcuFy\nuc7qexyGRY349evXk5qaSnZ2NgDz58+nXbt2zJ49u3ZMr169ag/8Bw8epEOHDrz++uuMGTOmbpE/\nh4S/OHIEFiwwWz6/+535RK/One2uSkR8TUuOnZbNBOLi4igsLKSoqIgePXqQmZlJRkZGnTH/+7//\nW/v51KlTGT16dL0A8CcnT8J//RfMmwe33ALffms+4EVExCqWhUBAQABpaWkkJibidrtJTk7G6XSS\nnp4OQEpKilU/2ufU1MC775orfpxOyMkx1/2LiFjNsnaQJ7XldtDXX5srfsBc5z9smL31iEjbYWs7\nSJq2bZvZ69+1y2z/3H67tngQkdanw04rKy42l3qOGAEjR8KOHfDb3yoARMQeOvS0krIyc3fPmBjo\n0QN274YHH4R/+ze7KxMRf6YQsNjJk/DCC+ZTvQ4eNLd4fvpp6NTJ7spERHRNwDI1NbBsGTz+uPlM\n36+/hn797K5KRKQuhYAFvvzSXPHTvj28+aa5v7+IiDdSCHhQfr654mfPHpg/HyZOBG2HJCLeTNcE\nPOCnn2DaNEhMNDd6Kygwl3wqAETE2ykEzoPbbW7zEBkJXbqYK35mztSKHxHxHWoHnaPNm2HGDAgM\nNK8BaJsHEfFFmgmcpbIyeOABc4O3+++HVasUACLiuxQCLWQYsHQp9O1rPt+3oADuvVd3+oqIb1M7\nqAV27DBbP0eOwIoVMHCg3RWJiHiGzmObUFFhPtHr+uth/HjIzVUAiEjbohBogGFAVpZ5h+/335tb\nPTzwAARo3iQibYwOa2fYu9fc2K2wEBYvhuHD7a5IRMQ6mgn87ORJc2O3+HgYNMg8+1cAiEhbp5kA\n5uMc//AHiIiATZsgNNTuikREWodfh8APP8Ajj8C6dfDSS+DHz7gXET/ll+2g6mpYuBCuugp69TLX\n/CsARMQf+d1MYN06807frl3hm2/MFpCIiL/ymxAoLTUf7/jJJ/D885CUpF0+RUTafDuopgYWLTK3\ne+jQwbz7d9IkBYCICFgcAtnZ2URERBAeHs6CBQvqfT0rK4vo6GhiY2O5+uqr+eqrrzz68/PzYfBg\neP11yM42rwPo2b4iIv/PYRiGYcUbu91u+vTpQ05ODkFBQcTHx5ORkYHT6awdU1FRwa9+9SsAtm3b\nxrhx49izZ0/9Ih0OzqbM8nJ48klzw7enn4bkZG30JiL+pyXHTssOjbm5uYSFhREaGkpgYCBJSUlk\nZWXVGXM6AACOHTtGt27dzutnGga8+67Z+ikvh+3bYfp0BYCISGMsuzBcUlJCSEhI7evg4GA2bNhQ\nb9yHH37IY489xv79+/niiy/O+eedfqrXjz9CZiZcd905v5WIiN+wLAQcLbzyOnbsWMaOHcvq1au5\n66672LVrV4PjUlNTaz9PSEggISEBgOPHzYe6v/oqzJljbvQWGHi+1YuI+B6Xy4XL5Tqr77EsBIKC\ngiguLq59XVxcTHBwcKPjhwwZQnV1NaWlpXTt2rXe138ZAqd9+ql59h8XB99+C028vYhIm/fLE2SA\nuXPnNvs9lnXL4+LiKCwspKioiKqqKjIzMxlzxm253333Xe1Fi7y8PIAGA+BM339v7u//0EPw2mvm\ndQAFgIjI2bNsJhAQEEBaWhqJiYm43W6Sk5NxOp2kp6cDkJKSwvLly1myZAmBgYF07NiRZcuWNfme\nVVXw4ovw7LPmds/vvAMXXmjVf4GISNtn2RJRT3I4HLhcBjNmwG9+A2lp0Lu33VWJiHi3liwR9ZkQ\nCAkxePFFGDdOd/uKiLREmwqBo0cNOna0uxIREd/RpkLAB8oUEfEqtt4xLCIi3k8hICLixxQCIiJ+\nTCEgIuLHFAIiIn5MISAi4scUAiIifkwhICLixxQCIiJ+TCEgIuLHFAIiIn5MISAi4scUAiIifkwh\nICLixxQCIiJ+TCEgIuLHFAIiIn5MISAi4scUAiIifszyEMjOziYiIoLw8HAWLFhQ7+tLly4lOjqa\nq666iuuuu46tW7daXZKIiPzM0hBwu93MnDmT7OxsCgoKyMjIYMeOHXXG9OrVi1WrVrF161b++te/\n8rvf/c7KkizlcrnsLqFFVKfn+EKNoDo9zVfqbAlLQyA3N5ewsDBCQ0MJDAwkKSmJrKysOmOuvfZa\nOnXqBMCAAQPYt2+flSVZylf+YahOz/GFGkF1epqv1NkSloZASUkJISEhta+Dg4MpKSlpdPyiRYu4\n+eabrSxJRER+IcDKN3c4HC0e+/XXX7N48WLWrFljYUUiIlKHYaF169YZiYmJta/nzZtnPPPMM/XG\n5efnG7179zYKCwsbfJ/evXsbgD70oQ996OMsPnr37t3scdphGIaBRaqrq+nTpw9ffvklPXr04Jpr\nriEjIwOn01k75vvvv2f48OG8/fbbDBw40KpSRESkAZa2gwICAkhLSyMxMRG3201ycjJOp5P09HQA\nUlJSeOqppzh8+DD3338/AIGBgeTm5lpZloiI/MzSmYCIiHg3r75jeNq0aVx++eVERUXZXUqjiouL\nGTZsGP369SMyMpKXXnrJ7pIadOLECQYMGEBMTAx9+/blscces7ukJrndbmJjYxk9erTdpTQqNDSU\nq666itjYWK655hq7y2lUWVkZEydOxOl00rdvX9avX293SfXs2rWL2NjY2o9OnTp55d/S/Pnz6dev\nH1FRUUyePJmTJ0/aXVKDFi5cSFRUFJGRkSxcuLDpwed2ybd1rFq1ysjLyzMiIyPtLqVR+/fvN7Zs\n2WIYhmEcPXrUuPLKK42CggKbq2pYRUWFYRiGcerUKWPAgAHG6tWrba6occ8//7wxefJkY/To0XaX\n0qjQ0FCjtLTU7jKadffddxuLFi0yDMP83ZeVldlcUdPcbrdxxRVXGN9//73dpdSxd+9eo2fPnsaJ\nEycMwzCMO+64w3jzzTdtrqq+bdu2GZGRkcbx48eN6upqY8SIEcaePXsaHe/VM4EhQ4Zw6aWX2l1G\nk6644gpiYmIA6NixI06nkx9++MHmqhrWoUMHAKqqqnC73XTp0sXmihq2b98+Pv30U+677z4ML+9W\nent9R44cYfXq1UybNg0wr9OdvjnTW+Xk5NC7d+869xh5g0suuYTAwEAqKyuprq6msrKSoKAgu8uq\nZ+fOnQwYMIALL7yQ9u3bM3ToUFasWNHoeK8OAV9TVFTEli1bGDBggN2lNKimpoaYmBguv/xyhg0b\nRt++fe0uqUEPP/wwzz33HO3aefc/T4fDwYgRI4iLi+P111+3u5wG7d27l+7duzN16lT69+/P9OnT\nqaystLvkTaxDAAADvUlEQVSsJi1btozJkyfbXUY9Xbp04ZFHHuE3v/kNPXr0oHPnzowYMcLusuqJ\njIxk9erVHDp0iMrKSj755JMmd2Lw7r8yH3Ls2DEmTpzIwoUL6dixo93lNKhdu3Z8++237Nu3j1Wr\nVnnlre8ff/wxl112GbGxsV5/lr1mzRq2bNnCZ599xiuvvMLq1avtLqme6upq8vLymDFjBnl5efzq\nV7/imWeesbusRlVVVbFy5Upuv/12u0up57vvvuPFF1+kqKiIH374gWPHjrF06VK7y6onIiKC2bNn\nc9NNNzFq1ChiY2ObPKFSCHjAqVOnmDBhAlOmTGHs2LF2l9OsTp06ccstt7Bp0ya7S6ln7dq1fPTR\nR/Ts2ZNJkybx1Vdfcffdd9tdVoN+/etfA9C9e3fGjRvnlUubg4ODCQ4OJj4+HoCJEyeSl5dnc1WN\n++yzz7j66qvp3r273aXUs2nTJgYNGkTXrl0JCAhg/PjxrF271u6yGjRt2jQ2bdrE3//+dzp37kyf\nPn0aHasQOE+GYZCcnEzfvn2ZNWuW3eU06uDBg5SVlQFw/Phx/ud//ofY2Fibq6pv3rx5FBcXs3fv\nXpYtW8bw4cNZsmSJ3WXVU1lZydGjRwGoqKjgiy++8MpVbFdccQUhISHs3r0bMPvt/fr1s7mqxmVk\nZDBp0iS7y2hQREQE69ev5/jx4xiGQU5Ojte2VH/66SfAvBn3gw8+aLK9ZunNYudr0qRJ/P3vf6e0\ntJSQkBCeeuoppk6dandZdaxZs4a33367dqkgmMvIRo4caXNlde3fv5977rmHmpoaampquOuuu7jh\nhhvsLqtZZ7P/VGs6cOAA48aNA8yWy5133slNN91kc1UNe/nll7nzzjupqqqid+/evPHGG3aX1KCK\nigpycnK89vpKdHQ0d999N3FxcbRr147+/ft77db3EydOpLS0lMDAQF599VUuueSSRsfqZjERET+m\ndpCIiB9TCIiI+DGFgIiIH1MIiIj4MYWAiIgfUwiIiPgxhYCIiB9TCIiI+DGFgMg5WrJkCdHR0cTE\nxHjt/kYizdEdwyLnYPv27YwfP55169bRpUsXDh8+7PXPvhBpiGYCIufgq6++4o477qh9MI8CQHyV\nQkDkHDgcDq9/3oFISygERM7B8OHDee+99zh06BBA7f+K+BpdExA5R0uWLOG5556jffv29O/fn8WL\nF9tdkshZUwiIiPgxtYNERPyYQkBExI8pBERE/JhCQETEjykERET8mEJARMSPKQRERPyYQkBExI/9\nH8HDd6tbA3Y3AAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x9caefb0>"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E6 - Pg 136"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate how many times the rich phase is more abundant in nitrobenzene\n",
      "#Initialization of variables\n",
      "nB=0.59 #mol\n",
      "nNB=0.41 #mol\n",
      "xN1=0.38\n",
      "xN2=0.74\n",
      "xNm=0.41\n",
      "#calculations\n",
      "print '%s' %('By lever rule')\n",
      "ratio=(xNm-xN1)/(xN2-xNm)\n",
      "percent=ratio*100. +1\n",
      "#results\n",
      "print '%s %d %s' %(\"The rich phase is\",percent,\"times more abundant in nitrobenzene\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "By lever rule\n",
        "The rich phase is 10 times more abundant in nitrobenzene\n"
       ]
      }
     ],
     "prompt_number": 24
    }
   ],
   "metadata": {}
  }
 ]
}