summaryrefslogtreecommitdiff
path: root/Elements_of_Physical_Chemistry/Chapter15.ipynb
blob: ada2a951ce88ac177e05872f11c06360f02c6609 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 15 - Metallic and Ionic Solids"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E1 - Pg 361"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate the lattice energy\n",
      "#Initialization of variables\n",
      "Hs=89 #kJ/mol\n",
      "HI=418 #kJ/mol\n",
      "HD=244 #kJ/mol\n",
      "HE=-349 #kJ/mol\n",
      "Hf=-437 #kJ/mol\n",
      "#calculations\n",
      "HL=Hs+HD/2. +HI+HE-Hf\n",
      "#results\n",
      "print '%s %d %s' %(\"Lattice energy =\",HL,\"kJ/mol\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Lattice energy = 717 kJ/mol\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E2 - Pg 369"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate the separation between the molecules in both the cases\n",
      "#Initialization of variables\n",
      "import math\n",
      "a=0.82 #nm\n",
      "b=0.94 #nm\n",
      "c=0.75 #nm\n",
      "h=1.\n",
      "k=2.\n",
      "l=3.\n",
      "#calculations\n",
      "invd=math.sqrt(h*h/(a*a) + k*k/(b*b) + l*l/(c*c))\n",
      "d=1./invd\n",
      "invd2=math.sqrt(h*h*4/(a*a) + k*k*4/(b*b) + l*l*4/(c*c))\n",
      "d2=1./invd2\n",
      "#results\n",
      "print '%s %.2f %s' %(\"In case 1, separation =\",d,\" nm\")\n",
      "print '%s %.2f %s' %(\"\\n In case 2, separation =\",d2,\" nm\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "In case 1, separation = 0.21  nm\n",
        "\n",
        " In case 2, separation = 0.11  nm\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E3 - Pg 371"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate the length of the side of the unit cell\n",
      "#Initialization of variables\n",
      "import math\n",
      "l=154. #pm\n",
      "theta=11.2 #degrees\n",
      "#calculations\n",
      "d=l/(2*math.sin(theta*math.pi/180.))\n",
      "a=d*math.sqrt(3)\n",
      "#results\n",
      "print '%s %.1f %s' %(\"Length of the side of the unit cell =\",a,\"pm\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Length of the side of the unit cell = 686.6 pm\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}