1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 12 - Quantum theory"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 276"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the number of photons required\n",
"#Initialization of variables\n",
"import math\n",
"P=100. #W\n",
"t=10. #s\n",
"l=560. #nm\n",
"#calculations\n",
"TE=P*t\n",
"E1=6.626*math.pow(10,-34) *2.998*math.pow(10,8) /(l*math.pow(10,-9))\n",
"N=TE/E1\n",
"#results\n",
"print '%s %.2e' %(\"No. of photons required = \",N)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"No. of photons required = 2.82e+21\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - Pg 278"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the wavelength of electrons\n",
"#Initialization of variables\n",
"import math\n",
"V=1000. #V\n",
"#calculations\n",
"l=6.626*math.pow(10,-34) /math.sqrt(2*9.11*math.pow(10,-31) *1.602*math.pow(10,-19) *V)\n",
"#results\n",
"print '%s %.2e %s' %(\"Wavelength of electrons =\",l,\" m\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Wavelength of electrons = 3.88e-11 m\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E3 - Pg 282"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the no. of times the electron would be more propable at r2 than at r1\n",
"#Initialization of variables\n",
"import math\n",
"r1=0 #multiply by a0\n",
"r2=1 #multiply by a0\n",
"#calculations\n",
"ratio=math.pow(math.e,r1) /math.pow(math.e,(-2.*r2))\n",
"#results\n",
"print '%s %.2f %s' %(\"It is more propable that electron would be found\",ratio,\"times more at r1\")\n",
"print '%s' %(\"The answer is a bit different due to rounding off error in textbook\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"It is more propable that electron would be found 7.39 times more at r1\n",
"The answer is a bit different due to rounding off error in textbook\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E4 - Pg 284"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the uncertainity in position\n",
"#Initialization of variables\n",
"import math\n",
"m=1 #g\n",
"v=math.pow(10,-6) #m/s\n",
"#calculations\n",
"dx=1.054*math.pow(10,-34) /(2*m*math.pow(10,-3) *v)\n",
"#results\n",
"print '%s %.1e %s' %(\"Uncertainity in position =\",dx,\" m\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Uncertainity in position = 5.3e-26 m\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example I1 - Pg 271"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the surface temperature\n",
"#Initialization of variables\n",
"import math\n",
"lmax=4.9*math.pow(10,-7) #m\n",
"#calculations\n",
"T=2.9*math.pow(10,-3) /lmax\n",
"#results\n",
"print '%s %d %s' %(\"Surface temperature must be close to\",T,\"K\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Surface temperature must be close to 5918 K\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example I2 - Pg 290"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the separation between adjacent levels frequency and energy\n",
"#Initialization of variables\n",
"import math\n",
"k=516. #N/m\n",
"m=1.67*math.pow(10,-27) #kg\n",
"#calculations\n",
"v=math.sqrt(k/m) /(2*math.pi)\n",
"E=6.624*math.pow(10,-34) *v\n",
"#results\n",
"print '%s %.2e %s' %(\"Separation between adjacent levels frequency,\",v,\"Hz\")\n",
"print '%s %.2e %s' %(\"\\n Energy =\",E,\"J\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Separation between adjacent levels frequency, 8.85e+13 Hz\n",
"\n",
" Energy = 5.86e-20 J\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|