1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11 - Accounting for the rate laws"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 255"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Max. velocity and Michaelis constant\n",
"#Initialization of variables\n",
"import math\n",
"import numpy as np\n",
"from numpy import linalg\n",
"S=[10, 20, 40, 80, 120, 180, 300]\n",
"v=[0.32, 0.58, 0.9, 1.22, 1.42, 1.58, 1.74]\n",
"#calculations\n",
"n=len(S)\n",
"def fun1(x):\n",
"\tfor i in range(0,len(x)):\n",
"\t\tx[i]=1000./(x[i])\n",
"\treturn x\n",
"\n",
"\n",
"def fun2(x):\n",
"\tfor i in range(0,len(x)):\n",
"\t\tx[i]=1./(x[i])\n",
"\treturn x\n",
"bys=fun1(S)\n",
"byv=fun2(v)\n",
"x=bys\n",
"y=byv\n",
"A = np.vstack([x, np.ones(len(x))]).T\n",
"m1, b1 = np.linalg.lstsq(A, y)[0]\n",
"print '%s' %(\"From graph,\")\n",
"vmax=1/b1\n",
"Km=m1*1000./b1\n",
"#results\n",
"print '%s %.2f %s' %(\"Max. velocity =\",vmax,\" mumol/L s\")\n",
"print '%s %.1f %s' %(\"\\n Michaelis constant =\",Km,\" mumol/L\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"From graph,\n",
"Max. velocity = 2.10 mumol/L s\n",
"\n",
" Michaelis constant = 55.0 mumol/L\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - Pg 257"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Equilibrium constant\n",
"#Initialization of variables\n",
"c=1.234\n",
"m=2.044\n",
"#calculations\n",
"Ki=c/m\n",
"#results\n",
"print '%s %.2f' %(\"KI = \",Ki)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"KI = 0.60\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E3 - Pg 265"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the no. of diheptane molecules destroyed \n",
"#Initialization of variables\n",
"import math\n",
"P=50. #J/s\n",
"l=313.*math.pow(10,-9) #m\n",
"h=6.62608*math.pow(10,-34) #Js\n",
"N=6.023*math.pow(10,23)\n",
"c=2.99792*math.pow(10,8) #m/s\n",
"yiel=0.21\n",
"#calculations\n",
"rate=P*l/(h*c)\n",
"Frate=yiel*rate\n",
"molrate=Frate/N\n",
"#results\n",
"print '%s %.1e %s' %(\"No.of diheptane molecules destroyed =\",Frate,\" s^-1\")\n",
"print '%s %.2e %s' %(\"\\n Moles of diheptane molecules destroyed =\",molrate,\"mol s^-1\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"No.of diheptane molecules destroyed = 1.7e+19 s^-1\n",
"\n",
" Moles of diheptane molecules destroyed = 2.75e-05 mol s^-1\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example I1 - Pg 243"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Equilibrium constant for dimerization\n",
"#Initialization of variables\n",
"import math\n",
"kf=8.18*math.pow(10,8) #L/mol s\n",
"kb=2*math.pow(10,6) #s^-1\n",
"#calculations\n",
"K=kf/kb\n",
"#results\n",
"print '%s %.1e' %(\"Equilibrium constant for dimerization = \",K)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Equilibrium constant for dimerization = 4.1e+02\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example I2 - Pg 248"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate if the reaction step is far from equilibrium and calculate the heat generated\n",
"#Initialization of variables\n",
"import math\n",
"F16bP=1.9*math.pow(10,-5) #mmol/L\n",
"ADP=1.3/1000. #mmol/L\n",
"ATP=11.4/1000. #mmol/L\n",
"F6P=8.9*math.pow(10,-5) #mmol/L\n",
"k=1.2*1000.\n",
"#calculations\n",
"Q=F16bP*ADP/(F6P*ATP)\n",
"if(Q<k):\n",
" print '%s %.3f' %(\"The reaction step is far from equilibrium and Q= \",Q)\n",
"else:\n",
" print '%s %.3f' %(\"The reaction step is at equilibrium and Q= \",Q)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reaction step is far from equilibrium and Q= 0.024\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|