1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
{
"metadata": {
"name": "ch7",
"signature": "sha256:9c280dff7f4e1d5ae99e0fbadb3fa83466c67b9a415e20bbef76992fab6df294"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7 : Crystallisation"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.1 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"c=.498; #solute content afetr crystallisation\n",
"W1=111.; #molecular weight of CaCl2\n",
"W2=219.; #molecular weight of CaCl2.6H2O\n",
"\n",
"# Calculation \n",
"M1=(108./W2)*100; #water present in 100kg of CaCl2.6H2O\n",
"M2=(W1/W2)*100; #CaCl2 present in 100kg of CaCl2.6H20\n",
"#t=M2+c*x; #total weight entering the solubility\n",
"#x+49.3; total water solubility used\n",
"#s*(x+49.3)/100 #total Cacl2 after solubility\n",
"#x=poly([0],'x'); #calc. x the weight of crystal\n",
"t= 32.112871 #roots((M2+c*x)-(x+49.3)*.819); \n",
"\n",
"# Result\n",
"print \"\\nthe weight of water in the quantity of solution needed :%f kg\"%t\n",
"\n",
"h=(c)*t; #weight of CaCl2 corresponding to weight water\n",
"tw=t+h; # total weight of the solution\n",
"print \"\\nthe total weight of the solution is :%f kg\"%tw\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"the weight of water in the quantity of solution needed :32.112871 kg\n",
"\n",
"the total weight of the solution is :48.105081 kg\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.2 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"#part(i)\n",
"w1=1000.; #weight of solution to be cooled\n",
"s1=104.1; #solubility at 50 degree per 100 kg of water\n",
"s2=78.0; #solubility at 10 degree per 100 kg of water\n",
"a2=45.; #percentage of sodium nitrate in the solution per 100kg of solution \n",
"\n",
"# Calculation \n",
"x1=s1/(100+s1)*100; #percentage of saturated solution at 50 degree\n",
"tw=(a2/(100-a2))/(x1/(100-x1)); #the percentage saturation\n",
"print \"\\nthe percentage saturation is :%f percent\"%(tw*100)\n",
"\n",
"#part(ii)\n",
"#let x be the weight of NaNO3 crystal formed after crystallisation\n",
"#x=poly([0],'x'); #calc. x the weight of crystal\n",
"t=21.000000 #roots((w1*a2/100)-(x+(w1-x)*s2/(100+s2)));\n",
"\n",
"# Result\n",
"print \"\\n the weight of NaNO3 crystal formed after crystallisation :%f kg\"%t\n",
"\n",
"#part(iii)\n",
"y=t/(a2*w1/100); #yield = weight of NaNO3 crystal formed/weight of NaNO3\n",
"print \"\\n the percentage yield is:%f percent\"%(y*100)\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"the percentage saturation is :78.595756 percent\n",
"\n",
" the weight of NaNO3 crystal formed after crystallisation :21.000000 kg\n",
"\n",
" the percentage yield is:4.666667 percent\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.3"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"s1=19.75; #solubility at 70 degree per 100 gm of water\n",
"s2=16.5; #solubility at 50 degree per 100 gm of water\n",
"s3=12.97; #solubility at 30 degree per 100 gm of water\n",
"s4=9.22; #solubility at 10 degree per 100 gm of water\n",
"s5=7.34; #solubility at 0 degree per 100 gm of water\n",
"\n",
"# Calculation \n",
" #basis is 1000kg of saturated solution\n",
"w1=1000.*(s1/(s1+100)); #weight of K2SO4 in the original solution\n",
"w2=1000.-w1; #weight of water in kg\n",
"w3=w1*.5; #weight of K2SO4 in the solution\n",
"wp=w3/(w3+w2); #weight percent of K2SO4 in the solution after crystallistion\n",
"\n",
"# Result\n",
"print \"\\n for the corresponding temperature to :%f percent of K2SO4 is 15 degree (by linear interpolation between 10 to 30 degree) \"%(wp*100)\n",
"\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" for the corresponding temperature to :8.987486 percent of K2SO4 is 15 degree (by linear interpolation between 10 to 30 degree) \n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.4 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"#part(i)\n",
"a1=146.; #solubility at 70 degree\n",
"a2=121.; #solubility at 10 degree\n",
"t1=58.; # percentage of solute content\n",
"t2=40.66;\n",
"\n",
"# Calculation and Result\n",
"x1=a1/(100+a1) *100; #percentage of saturated solution at 50 degree\n",
"tw=(t1/42.)/(x1/t2); #the percentage saturation\n",
"print \"\\nthe percentage saturation is :%f percent\"%(tw*100)\n",
"\n",
"#part(ii)\n",
"p1=2000*.58; #weight of solute in 200kg of solution 2000*.58\n",
"#let x be the weight of crystal formed after crystallisation\n",
"#x=poly([0],'x'); #calc. x the weight of crystal\n",
"t=231.743929 #roots((1160)-(x+(1055.02-.547*x))); \n",
"print \"\\n the weight of NaNO3 crystal formed after crystallisation :%f kg\"%t\n",
"\n",
"#part(iii)\n",
"y=t/p1; #yield = weight of NaNO3 crystal formed/weight of NaNO3\n",
"print \"\\n the percentage yield is:%f percent\"%(y*100)\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"the percentage saturation is :94.608102 percent\n",
"\n",
" the weight of NaNO3 crystal formed after crystallisation :231.743929 kg\n",
"\n",
" the percentage yield is:19.977925 percent\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.5"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"p1=.3; #percentage of the solute in the solution\n",
"w1=1000.; #weight of the solution taken\n",
"w2=142.; #molecular weight of Na2SO4.\n",
"\n",
"# Calculation \n",
"M1=(w2/(180+w2)); #solute (Na2SO4) present in the Na2CO3.10H2O solution\n",
"s1=40.8; #solubility of Na2SO4 at 30 degree per 100 gm of water\n",
"s2=9.0; #solubility of Na2SO4 at 10 degree per 100 gm of water\n",
"#percent weight of solute in Na2SO4.10H2O= 144/322\n",
"#let x be the weight of crystal formed \n",
"#x=poly([0],'x'); #calc. x the weight of crystal\n",
"t= 576.477290 #roots((w1*40.8/140.8)-(.442*x+(w1-x)*(s2/(100+s2)))); \n",
"\n",
"# Result\n",
"print \"\\n the weight of crystal formed after crystallisation :%f kg\"%t\n",
"\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" the weight of crystal formed after crystallisation :576.477290 kg\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.6 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"s1=12.5; #solubility of Na2CO3 at 10 degree per 100 gm of water\n",
"p1=.3; #percentage of the solute in the solution\n",
"w1=2000.; #weight of the solution taken\n",
"w2=106.; #molecular weight of Na2CO3.\n",
"\n",
"# Calculation \n",
"M1=(w2/(180+w2)); #solute (Na2CO3) present in the Na2CO3.10H2O solution\n",
"#let x be the quantity of Na2CO3.10H2O crystal formed\n",
"#x=poly([0],'x'); #calc. x the weight of crystal\n",
"t= 1455.688623 #roots(w1*p1-M1*x-(w1-x)*(s1/(100+s1))); \n",
"\n",
"# Result\n",
"print \"\\n the weight of quantity of Na2CO3.10H2O :%f kg\"%t\n",
"#in the book the ans is wrong, they have calculated 2000*0.3-2000*12.5/112.5 as =x(miscalculation)\n",
"\n",
"p=(286./106)*w1*p1; #weight of Na2CO3.10H2O crystal present in the original solution\n",
"y=t/p; #percentage yield \n",
"print \"\\n percentage yield :%f percent\"%(y*100)\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" the weight of quantity of Na2CO3.10H2O :1455.688623 kg\n",
"\n",
" percentage yield :89.920160 percent\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.7 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"s1=139.8; #solubility at 80 degree per 100 gm of water\n",
"s2=110.5; #solubility at 20 degree per 100 gm of water\n",
"w2=174.2; #molecular weight of K2CO3.10H2O\n",
"\n",
"# Calculation \n",
"M1=(138/w2)*100; #water present in 100kg of K2CO3.10H2O\n",
"#let x be the quantity of Na2CO3.10H2O\n",
"#x=poly([0],'x'); #calc. x the weight of crystal\n",
"t=108.634036 #roots(500*(139.8/239.8)-.7921*x-(500-x)*110.5/210.5); \n",
"\n",
"# Result\n",
"print \"\\n the weight of quantity of K2CO3.10H2O formed :%f kg\"%t\n",
"\n",
"p=(174./138)*500*(139.8/239.8); #weight of crystal present in the original solution\n",
"y=t/p; #percentage yield \n",
"print \"\\n percentage yield :%f percent\"%(y*100)\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" the weight of quantity of K2CO3.10H2O formed :108.634036 kg\n",
"\n",
" percentage yield :29.557504 percent\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.8 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"s1=20.51; #solubility at 10 degree per 100 gm of water\n",
"w2=277.85; #molecular weight of FeSO4.7H2O\n",
"\n",
"# Calculation and Result\n",
"#let x be the quantity of Na2CO3.10H2O\n",
"#x=poly([0],'x'); #calc. x the weight of crystal\n",
"t= 549.684973 #roots(900*.4-.5465*x-(900-x)*20.5/120.5); \n",
"print \"\\n the weight of quantity of FeSO4.7H2O formed :%f kg\"%t\n",
"\n",
"p=(277.85/151.85)*900*(0.4); #weight of crystal present in the original solution\n",
"y=t/p; #percentage yield \n",
"print \"\\n percentage yield :%f percent\"%(y*100)\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" the weight of quantity of FeSO4.7H2O formed :549.684973 kg\n",
"\n",
" percentage yield :83.447967 percent\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.9"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"#part(i)\n",
"a1=229.7; #solubility at 60 degree\n",
"a2=174.7; #solubility at 60 degree\n",
"t1=68; # percentage of sodium nitrate\n",
"t2=30.34;\n",
"\n",
"# Calculation and Result\n",
"x1=a1/329.7 *100; #percentage of saturated solution at 50 degree\n",
"tw=(t1/32.)/(x1/t2); #the percentage saturation\n",
"print \"\\nthe percentage saturation is :%f percent\"%(tw*100)\n",
"\n",
"#part(ii)\n",
"#let x be the weight of Cesium chloride crystal formed after crystallisation\n",
"#x=poly([0],'x'); #calc. x the weight of crystal\n",
"t=120.960000 #roots(1000*.68-(x+(1000-x)*174.7/274.7)); \n",
"print \"\\n the weight of CaCl2 crystal formed after crystallisation :%f kg\"%t\n",
"\n",
"#part(iii)\n",
"y=t/680.; #yield = weight of CaCl2 crystal formed/weight of CaCl2\n",
"print \"\\n the percentage yield of Cesium chloride is:%f percent\"%(y*100)\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"the percentage saturation is :92.540632 percent\n",
"\n",
" the weight of CaCl2 crystal formed after crystallisation :120.960000 kg\n",
"\n",
" the percentage yield of Cesium chloride is:17.788235 percent\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.10"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"s1=38.8; #solubility at 30 degree per 100 gm of water\n",
"s2=12.5; #solubility at 10 degree per 100 gm of water\n",
"w2=296; #molecular weight of Na2CO3.10H2O\n",
"per=116./w2 *100; #percentage solute in Na2CO3.10H2O\n",
"\n",
"#let x be the quantity of Na2CO3.10H2O\n",
"w=200.; #original solotion weight\n",
"\n",
"# Calculation \n",
"m1=w*(s2/(s2+100)); #weight of Na2CO3.10H2O needed to dissolve Na2CO3 present in the original solotion \n",
"w3=w-m1; #weight of water \n",
"#w4=m1+per/100; weight of Na2CO3 after dissolution\n",
"x1=s1/(s1+100); #weight fraction of solute after dissolution \n",
"\n",
"# Result\n",
"print \"\\n the weight of quantity of Na2CO3.10H2O formed :%f kg\"%w3\n",
"\n",
"#for the total solution after dissolution\n",
"#x=poly([0],'x'); #calc. x the weight of crystal\n",
"t= 300.485784 #roots((m1+per*x/100)-((m1+per*x/100)+(w3+.609*x))*x1); \n",
"print \"\\nweight of Na2CO3.10H2O needed to dissolve Na2CO3 present in the original solution %f kg\"%t\n",
"\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" the weight of quantity of Na2CO3.10H2O formed :177.777778 kg\n",
"\n",
"weight of Na2CO3.10H2O needed to dissolve Na2CO3 present in the original solution 300.485784 kg\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.11"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"s1=35.; #percentage of solution\n",
"x1=6000.; #weight of Na2CO3 solution\n",
"s2=21.5; #solubility at 20 degree per 100 gm of water\n",
"w2=296.; #molecular weight of Na2CO3.10H2O\n",
"\n",
"# Calculation \n",
"per=116./w2 *100; #percentage solute in Na2CO3.10H2O\n",
"w1=s1*x1; #weight of solute\n",
"w3=x1*0.04; #weight of solution lost by vaporisation\n",
"#let x be the quantity of Na2CO3.10H2O formed \n",
"#making material balance \n",
"#x=poly([0],'x'); #calc. x the weight of crystal\n",
"t= 5049.122335 #roots(2100-(.391*x)-(6000-240-x)*(21.5/121.5)); \n",
"\n",
"# Result\n",
"print \"\\n the weight of Na2CO3.10H2O crystal formed after crystallisation :%f kg\"%t\n",
"\n",
"\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" the weight of Na2CO3.10H2O crystal formed after crystallisation :5049.122335 kg\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.12"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"C=1000.; #crystal formed in kg\n",
"hf=26.002; #enthalpy of the feed at 80 degree in cal/g\n",
"hl=-1.33; #enthalpy of the saturated sol at 30 degree in cal/g\n",
"hc=-50.56; #enthalpy of crystal\n",
"xf=40./(100+40);\n",
"xm=30./(100+30);\n",
"xc=151.84/277.85; #151.84 is the weight of FeSO4\n",
" #component balance\n",
"\n",
"Hf=26.002; #enthalpy of the feed at 80 degree in cal/g\n",
"Hv=612.; #\n",
"Hm=-1.33; #enthalpy of the saturated sol at 30 degree in cal/g\n",
"Hc=-50.56; #enthalpy of crystal leaving the crystalliser\n",
"from numpy import matrix\n",
"from numpy import linalg\n",
"#solving these we gt \n",
"\n",
"# Calculation \n",
"a=matrix([[1,-1,-1],[.286,-.231,0],[26.002,1.33,-612]])\n",
"b=matrix([[10000],[5470],[-505600]])\n",
"x=linalg.inv(a)*b; #solving out the values using matrices \n",
"t1=x[0]; #3 solution of the eqn\n",
"t2=x[1];\n",
"t3=x[2];\n",
"\n",
"# Result\n",
"print \"\\n the feed rate F= : %f kg/hr \\n value of M= : %f kg/hr\\n value of V=: %f kg/hr\"%(t1,t2,t3)\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" the feed rate F= : 45556.688340 kg/hr \n",
" value of M= : 32723.865218 kg/hr\n",
" value of V=: 2832.823122 kg/hr\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.13 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"import math\n",
"C=800.; #crystal formed in kg/hr\n",
"t2=49.; #temp. of the entering fed\n",
"t1=27.; #temp. of the product\n",
"t3=21.; #temp. of the leaving cooling water\n",
"t4=15.; #temp. of the enetring cooling water\n",
"U=175.; #overall heat transfer coefficient\n",
"F=140*151.85/277.85; #feed concentration \n",
"xf=F/240; #concentration in feed solution\n",
"P=74*151.85/277.85; #product concentration \n",
"xm=P/174; #concentration of FeSO4 in product solution\n",
"xc=151.85/277.85; #\n",
" \n",
"# Calculation \n",
"#solving these we get\n",
"F=800*.3141/0.0866; #feed conc.\n",
"M=F-C; #product concentration \n",
" #making energy balance\n",
" #heat to be removed by cooling water =heat to be removed from solution + heat of crystallization\n",
"cp=.7; #specific heat capacity\n",
"dt=(t2-t1); #change in temp.\n",
"dh=15.8; #heat of crystallization\n",
"Q=F*cp*dt+dh*C; #heat to be removed by cooling water\n",
"cp=1; #specific heat capacity of water\n",
"dt=(t3-t4); #change in temp.\n",
"mw=Q/(cp*dt); #cooling water needed\n",
"\n",
"# Result \n",
"print \"\\n cooling water requiement is :%f kg/hr\"%mw\n",
" #Q=U*A*(dtlm)\n",
"dtlm=((t2-t3)-(t1-t4))/(math.log((t2-t3)/(t1-t4)));#log mean temp. difference\n",
"A=Q/(U*dtlm); #area of the crystallizer section\n",
"l=A/1.3;\n",
"print \"\\n length of crystallliser sections needed is :%f m\"%l\n",
"\n",
"#end"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" cooling water requiement is :9554.149346 kg/hr\n",
"\n",
" length of crystallliser sections needed is :13.343753 m\n"
]
}
],
"prompt_number": 27
}
],
"metadata": {}
}
]
}
|