summaryrefslogtreecommitdiff
path: root/Electronics_Devices_And_Circuits/chapter11.ipynb
blob: 4150f8423352224f1c1de5c884a5b64d0067cddd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
{
 "metadata": {
  "name": "",
  "signature": "sha256:9ece3b9f8730ff4f15d623a124d9415b373cdc935ed6cb089360bef5516a2604"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "                                Chapter 11: Cathode Ray Oscilloscope"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.2,Page number 532"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "E=120                  #electric field(V/m)              \n",
      "B=5*10**-5             #magnetic field(T) \n",
      "q=1.6*10**-19          #charge on electron(C)\n",
      "u=10**6                #velocity of electron(m/s)\n",
      "m=9.1*10**-31          #mass of electron(Kg) \n",
      "a=9.81                 #acceleration of gravitation(m/s^2)\n",
      "\n",
      "#Calculations\n",
      "#Part a\n",
      "fe=q*E                #force on electron due to electric field(N)\n",
      "\n",
      "#Part\n",
      "fm=B*q*u             #force on electron due to magnetic field(N)\n",
      "\n",
      "#Part c\n",
      "fg=m*a               #force on electron due to gravitational field(N)\n",
      "\n",
      "#Results\n",
      "print\"force on electron due to electric field is\",fe,\"N\"\n",
      "print\"force on electron due to magnetic field is\",fm,\"N\"\n",
      "print\"force on electron due to gravitational field is\",fg,\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "force on electron due to electric field is 1.92e-17 N\n",
        "force on electron due to magnetic field is 8e-18 N\n",
        "force on electron due to gravitational field is 8.9271e-30 N\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.3,Page number 532"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "T1=1200.                         #temperature(k)\n",
      "T2=1000.                         #temperature(k)\n",
      "Ww=1.2*10**5                     #work function(eV)\n",
      "k=8.62\n",
      "Ie1=200                         #emission current density\n",
      "T3=1500.                        #temperature(k)\n",
      "\n",
      "#Calculations\n",
      "Ie2=Ie1*(T2/T1)**2*math.exp(-(Ww/k)*((1/T2)-(1/T1)))             #current density(mA/cm^2) at 1000k\n",
      "Ie3=Ie1*(T3/T1)**2*math.exp(-(Ww/k)*((1/T3)-(1/T1)))             #current density(mA/cm^2) at 1000k\n",
      "\n",
      "#Results\n",
      "print\"current density at 1000 k is\",round(Ie2,2),\"mA/cm^2\"\n",
      "print\"current density at 1500 k is\",round(Ie3,2),\"mA/cm^2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "current density at 1000 k is 13.65 mA/cm^2\n",
        "current density at 1500 k is 3180.49 mA/cm^2\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.4,Page number 533"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "Ls=40                     #distance from screen(m)\n",
      "d=1.5                     #distance between plates(cm)\n",
      "Va=1200                   #accelerating potential(V) \n",
      "L=3                       #length of CRT(m)\n",
      "e=1.6*10**-19             #charge on electron(C)\n",
      "m=9.1*10**-31             #mass of electron(Kg) \n",
      "Y=4*10**-2                #vertical deflection(V)\n",
      "\n",
      "#Calculations\n",
      "#Part a\n",
      "U=math.sqrt((2*e*Va)/m)   #velocity of electron upon striking screen(m/s)\n",
      "\n",
      "#Part\n",
      "Vd=(2*d*Va*Y)/(L*Ls)      #deflecting voltage(V)\n",
      "\n",
      "#Part c\n",
      "Vdmax=(m*d**2*U**2)/(e*L**2)   #maximum allowable deflection(V)\n",
      "\n",
      "#Results\n",
      "print\"velocity of electron upon stricking the screen is\",round((U/1E+7),3),\"*10^7 m/s\"\n",
      "print\"deflecting voltage is\",round(Vd/1E-2),\"V\"\n",
      "print\"maximum allowable deflection is\",Vdmax,\"V\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "velocity of electron upon stricking the screen is 2.054 *10^7 m/s\n",
        "deflecting voltage is 120.0 V\n",
        "maximum allowable deflection is 600.0 V\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}