1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 9 - Digital Circuits and Logic Families"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9_1 Page No. 278"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"VCC= 5.00 volts\n",
"RB= 10000.00 ohm\n",
"RL= 1000.00 ohm\n",
"VCS= 0.20 volts\n",
"VBS= 0.80 volts\n",
"V_gamma= 0.60 volts\n",
"ICS = (VCC-VCS)/RL=4.80e-03 ampere\n",
"vi= 5.00 volts\n",
"IBS=(vi-VBS)/RB=4.20e-04 ampere\n",
"Beta_Fmin=ICS/IBS= 11.43\n"
]
}
],
"source": [
"from __future__ import division \n",
"VCC=5\n",
"print \"VCC= %0.2f\"%(VCC),\" volts\" # voltage supply \n",
"RB=10*10**(3)\n",
"print \"RB= %0.2f\"%(RB),\" ohm\" # Base-resistance\n",
"RL=1*10**(3)\n",
"print \"RL= %0.2f\"%(RL),\" ohm\" # Load resistance\n",
"VCS=0.2\n",
"print \"VCS= %0.2f\"%(VCS),\" volts\" # collector saturated voltage \n",
"VBS=0.8\n",
"print \"VBS= %0.2f\"%(VBS),\" volts\" # Base voltage at saturation \n",
"V_gamma=0.6\n",
"print \"V_gamma= %0.2f\"%(V_gamma),\" volts\" # Threshold or cut-in voltage\n",
"ICS=(VCC-VCS)/RL\n",
"print \"ICS = (VCC-VCS)/RL=%0.2e\"%(ICS),\" ampere\" #Saturation collector current of transistor T1\n",
"vi=5\n",
"print \"vi= %0.2f\"%(vi),\" volts\" # Input voltage \n",
"IBS=(vi-VBS)/RB\n",
"print \"IBS=(vi-VBS)/RB=%0.2e\"%(IBS),\" ampere\" # Forward base drive required to sustain ICS\n",
"Beta_Fmin=ICS/IBS\n",
"print \"Beta_Fmin=ICS/IBS= %0.2f\"%(Beta_Fmin) # Common-emitter current gain\n",
"\n",
"#NOTE: Correct formulae for ICS=(VCC-VCS)/RL\n",
"# but in book it is written wrong as ICS=(VCC-VCS)/RB but had calculated ans (in book) according to correct formulae ICS=(VCC-VCS)/RL"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9_2 Page No. 279"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"VD= 0.70 V\n",
"part(i)\n",
"vA= 0.00 V\n",
"vB= 0.00 V\n",
"vX=0.00 V\n",
"part(ii)\n",
"vA= 0.00 V\n",
"vB= 5.00 V\n",
"vX=vB-VD= 4.30 V\n",
"part(iii)\n",
"vA= 5.00 V\n",
"vB= 0.00 V\n",
"vX=vA-VD= 4.30 V\n",
"part(iv)\n",
"vA= 5.00 V\n",
"vB= 5.00 V\n",
"vX=vA-VD=vB-VD= 4.30 V\n"
]
}
],
"source": [
"from __future__ import division \n",
"VD=0.7\n",
"print \"VD= %0.2f\"%(VD),\" V\" # Diode voltage drop in conduction mode\n",
"\n",
"print \"part(i)\"# part(i)of question\n",
"vA=0\n",
"print \"vA= %0.2f\"%(vA),\" V\" # Input voltage1 of diode OR logic gate\n",
"vB=0\n",
"print \"vB= %0.2f\"%(vB),\" V\" # Input voltage2 of diode OR logic gate\n",
"vX=0 # Since both input voltages vA=vB=0V\n",
"print \"vX=%0.2f\"%(vX),\" V\" # Output voltage of diode OR logic gate for part(i)\n",
"\n",
"print \"part(ii)\"# part(ii)of question\n",
"vA=0\n",
"print \"vA= %0.2f\"%(vA),\" V\" # Input voltage1 of diode OR logic gate\n",
"vB=5\n",
"print \"vB= %0.2f\"%(vB),\" V\" # Input voltage2 of diode OR logic gate for SECOND CASE: when vA=0V and vB=5V\n",
"vX=vB-VD\n",
"print \"vX=vB-VD= %0.2f\"%(vX),\" V\" # Output voltage of diode OR logic gate for SECOND CASE\n",
"\n",
"print \"part(iii)\"# part(iii)of question\n",
"vA=5\n",
"print \"vA= %0.2f\"%(vA),\" V\" # Input voltage1 of diode OR logic gate for THIRD CASE when vA=5V and vB=0V\n",
"vB=0\n",
"print \"vB= %0.2f\"%(vB),\" V\" # Input voltage2 of diode OR logic gate\n",
"vX=vA-VD\n",
"print \"vX=vA-VD= %0.2f\"%(vX),\" V\" # Output voltage of diode OR logic gate for THIRD CASE\n",
"\n",
"print \"part(iv)\"# part(iv)of question\n",
"vA=(+5)\n",
"print \"vA= %0.2f\"%(vA),\" V\" # Input voltage1 of diode OR logic gate\n",
"vB=(+5)\n",
"print \"vB= %0.2f\"%(vB),\" V\" # Input voltage2 of diode OR logic gate\n",
"vX=vA-VD # Since both diodes D1 and D2 are conducting\n",
"vX=vB-VD \n",
"print \"vX=vA-VD=vB-VD= %0.2f\"%(vX),\" V\" # Output voltage of diode OR logic gate for FOURTH CASE: when vA=5V and vB=5V"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9_3 Page No. 281"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"VD= 0.70 V\n",
"part(i)\n",
"vA= 0.00 V\n",
"vB= 0.00 V\n",
"vX=VD=0.70 V\n",
"part(ii)\n",
"vA= 0.00 V\n",
"vB= 5.00 V\n",
"vX=VD 0.70 V\n",
"part(iii)\n",
"vA= 5.00 V\n",
"vB= 0.00 V\n",
"vX= 0.70 V\n",
"part(iv)\n",
"vA= 5.00 V\n",
"vB= 5.00 V\n",
"vX = vA = vB= 5.00 V\n"
]
}
],
"source": [
"from __future__ import division \n",
"VD=0.7\n",
"print \"VD= %0.2f\"%(VD),\" V\" # Diode voltage drop in conduction mode\n",
"\n",
"print \"part(i)\"\n",
"vA=0\n",
"print \"vA= %0.2f\"%(vA),\" V\" # Input voltage of diode AND logic gate\n",
"vB=0\n",
"print \"vB= %0.2f\"%(vB),\" V\" # Input voltage2 of diode AND logic gate\n",
"\n",
"vX=VD # Since both input voltages vA=vB=0V\n",
"print \"vX=VD=%0.2f\"%(vX),\" V\" # Output voltage of diode AND logic gate for FIRST CASE: when vA=0V and vB=0V\n",
"\n",
"print \"part(ii)\"\n",
"vA=0\n",
"print \"vA= %0.2f\"%(vA),\" V\" # Input voltage of diode AND logic gate\n",
"vB=5\n",
"print \"vB= %0.2f\"%(vB),\" V\" # Input voltage2 of diode AND logic gate for SECOND CASE: when vA=0V and vB=5V\n",
"vX=VD #due to diode A which is conducting and the Diode B is reverse biased with a voltage VD-VB=0.7-5=-4.3\n",
"print \"vX=VD %0.2f\"%(vX),\" V\"\n",
"#due to diode B which is conducting\n",
"\n",
"\n",
"\n",
"print \"part(iii)\"\n",
"vA=5\n",
"print \"vA= %0.2f\"%(vA),\" V\" # Input voltage for THIRD CASE when vA=5V and vB=0V\n",
"vB=0\n",
"print \"vB= %0.2f\"%(vB),\" V\" # Input voltage2 of diode AND logic gate\n",
"vX = VD#due to diode B which is conducting and the Diode A is reverse biased with a voltage VD-VA=0.7-5=-4.3\n",
"print \"vX= %0.2f\"%(vX),\" V\"\n",
"\n",
"print \"part(iv)\"\n",
"vA=5\n",
"print \"vA= %0.2f\"%(vA),\" V\" # Input voltage forfourth CASE when vA=5V and vB=5V\n",
"vB=5\n",
"print \"vB= %0.2f\"%(vB),\" V\" # Input voltage2 of diode AND logic gate for CASE: when vA=0V and vB=5V\n",
"vX=vA # Since both diodes D1 and D2 are Non-conducting, so no voltage drop across'R'(resistor)\n",
"print \"vX = vA = vB= %0.2f\"%(vX),\" V\" # Output voltage of diode AND logic gate for FOURTH CASE: when vA=5V and vB=5V"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9_6 Page No. 285"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"VIL= 0.60 V\n",
"VIH= 0.75 V\n",
"VOL= 0.20 V\n",
"VOH= 1.00 V\n",
"NML=VIL-VOL= 0.40 V\n",
"NMH=VOH-VIH= 0.25 V\n"
]
}
],
"source": [
"from __future__ import division \n",
"VIL=0.6\n",
"print \"VIL= %0.2f\"%(VIL),\" V\" # Minimum input voltage level for which output is maximum\n",
"VIH=0.75\n",
"print \"VIH= %0.2f\"%(VIH),\" V\" # Maximum input voltage level for which output is minimum\n",
"VOL=0.2\n",
"print \"VOL= %0.2f\"%(VOL),\" V\" # Minimum output voltage level for maximum input level\n",
"VOH=1\n",
"print \"VOH= %0.2f\"%(VOH),\" V\" # Maximum output voltage level for minimum input level\n",
"NML=VIL-VOL\n",
"print \"NML=VIL-VOL= %0.2f\"%(NML),\" V\" # Low level noise immunities\n",
"NMH=VOH-VIH\n",
"print \"NMH=VOH-VIH= %0.2f\"%(NMH),\" V\" # High level noise immunities"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9_7 Page No. 287"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"IIL= -1.60e-03 A\n",
"IIH= 4.00e-05 A\n",
"IOL= 1.60e-02 A\n",
"IOH= -4.00e-04 A\n",
"Fan-out=abs((IOH/IIH)=abs((IOL/IIL))= 10.00\n"
]
}
],
"source": [
"from __future__ import division \n",
"IIL=-1.6*10**(-3)\n",
"print \"IIL= %0.2e\"%(IIL),\" A\" # Input sink Current of TTL driver\n",
"IIH=40*10**(-6)\n",
"print \"IIH= %0.2e\"%(IIH),\" A\" # source (supply) reverse Current of TTL driver\n",
"IOL=16*10**(-3)\n",
"print \"IOL= %0.2e\"%(IOL),\" A\" # Specified Maximum sink Current of TTL driver\n",
"IOH=-400*10**(-6)\n",
"print \"IOH= %0.2e\"%(IOH),\" A\" # Specified Maximum source Current of TTL driver\n",
"Fan_out=abs((IOH/IIH))\n",
"print \"Fan-out=abs((IOH/IIH)=abs((IOL/IIL))= %0.2f\"%(Fan_out)# Fan-out of TTL"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9_8 Page No. 288"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"VIL= 0.80 V\n",
"VIH= 2.00 V\n",
"VOL= 0.40 V\n",
"VOH= 2.40 V\n",
"NML=VIL-VOL= 0.40 V\n",
"NMH=VOH-VIH= 0.40 V\n"
]
}
],
"source": [
"from __future__ import division \n",
"VIL=0.8\n",
"print \"VIL= %0.2f\"%(VIL),\" V\" # Minimum input voltage level for which output is maximum\n",
"VIH=2\n",
"print \"VIH= %0.2f\"%(VIH),\" V\" # Maximum input voltage level for which output is minimum\n",
"VOL=0.4\n",
"print \"VOL= %0.2f\"%(VOL),\" V\" # Minimum output voltage level for maximum input level\n",
"VOH=2.4\n",
"print \"VOH= %0.2f\"%(VOH),\" V\" # Maximum output voltage level for minimum input level\n",
"NML=VIL-VOL\n",
"print \"NML=VIL-VOL= %0.2f\"%(NML),\" V\" # Low level noise immunities\n",
"NMH=VOH-VIH\n",
"print \"NMH=VOH-VIH= %0.2f\"%(NMH),\" V\" # High level noise immunities"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9_9 Page No. 289"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"VIL= 1.00 V\n",
"VIH= 4.00 V\n",
"VOL= 0.50 V\n",
"VOH= 4.50 V\n",
"NML=VIL-VOL= 0.50 V\n",
"NMH=VOH-VIH= 0.50 V\n"
]
}
],
"source": [
"from __future__ import division \n",
"VIL=1\n",
"print \"VIL= %0.2f\"%(VIL),\" V\" # Minimum input voltage level for which output is maximum\n",
"VIH=4\n",
"print \"VIH= %0.2f\"%(VIH),\" V\" # Maximum input voltage level for which output is minimum\n",
"VOL=0.5\n",
"print \"VOL= %0.2f\"%(VOL),\" V\" # Minimum output voltage level for maximum input level\n",
"VOH=4.5\n",
"print \"VOH= %0.2f\"%(VOH),\" V\" # Maximum output voltage level for minimum input level\n",
"NML=VIL-VOL\n",
"print \"NML=VIL-VOL= %0.2f\"%(NML),\" V\" # Low level noise immunities\n",
"NMH=VOH-VIH\n",
"print \"NMH=VOH-VIH= %0.2f\"%(NMH),\" V\" # High level noise immunities"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9_10 Page No. 291"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"V_gamma= 0.60 volts\n",
"VEE= -5.20 volts\n",
"VBE3=VBE4=VBE5 0.70 volts\n",
"RE= 779.00 ohm\n",
"RL2= 220.00 ohm\n",
"RL3= 245.00 ohm\n",
"VREF= -1.29 volts\n",
"V(1)= -0.70 volts\n",
"V(0)= -1.70 volts\n",
"part(i)\n",
"VE=VREF-VBE3= -1.99 volts\n",
"IE=(VEE-VE)/RE= -0.00 A\n",
"IC3=IE= -0.00 A\n",
"vC3=IC3*RL3= -1.01 volts\n",
"vY=vC3-VBE5= -1.71 volts\n",
"vX=vC2-VBE4= -0.70 volts\n",
"Base -Emitter reverse voltage,VBEr=V(0)-VE= 0.29 volts\n",
"Transistor T1 and T2 off since VBEr < V_gamma\n",
"part(ii)\n",
"vY=VC3-VBE= -0.70 volts\n",
"VE=vB-VBE= -1.40 volts\n",
"VBE3=VREF-VE= 0.11 volts\n",
"VBE3 is smaller than V_gamma,hence T3 is off\n",
"IC2=(VEE-VE)/RE= -0.00 A\n",
"vC2=IC2*RL2= -1.07 volts\n",
"vX=vC2-VBE4= -1.77 volts\n",
"part(iii)\n",
"VE3=VE= -1.99 volts\n",
"VB3=VREF= -1.29 volts\n",
"IC3=(VEE-VE3)/RE= -0.00 A\n",
"VC3=IC3*RL3= -1.01 volts\n",
"VCB3=VC3-VB3= 0.28 volts\n",
"All parameters have appropriate signs for npn BJT hence BJT in active region\n"
]
}
],
"source": [
"from __future__ import division \n",
"V_gamma=0.6\n",
"print \"V_gamma= %0.2f\"%(V_gamma),\" volts\" #Threshold voltage\n",
"VEE=-5.2\n",
"print \"VEE= %0.2f\"%(VEE),\" volts\" # voltage supply \n",
"VBE3=0.7\n",
"VBE4=VBE3\n",
"VBE5=VBE3\n",
"print \"VBE3=VBE4=VBE5 %0.2f\"%(VBE3),\" volts\" #base-emitter voltage\n",
"RE=779\n",
"print \"RE= %0.2f\"%(RE),\" ohm\" # Emitter-resistance\n",
"RL2=220\n",
"print \"RL2= %0.2f\"%(RL2),\" ohm\" # Load resistance\n",
"RL3=245\n",
"print \"RL3= %0.2f\"%(RL3),\" ohm\" # Load resistance\n",
"VREF=-1.29\n",
"print \"VREF= %0.2f\"%(VREF),\" volts\" # Reference- voltage \n",
"V_1=-0.7\n",
"print \"V(1)= %0.2f\"%(V_1),\" volts\" # Acceptable voltage for high logic \n",
"V_0=-1.7\n",
"print \"V(0)= %0.2f\"%(V_0),\" volts\" # Acceptable voltage for low logic \n",
"\n",
"print \"part(i)\"# part(i)of question\n",
"VE=VREF-VBE3\n",
"print \"VE=VREF-VBE3= %0.2f\"%(VE),\" volts\" # Emitter- voltage \n",
"IE=(VEE-VE)/RE\n",
"print \"IE=(VEE-VE)/RE= %0.2f\"%(IE),\" A\" #Emitter- Current\n",
"IC3=IE# since IC=IE neglecting IB\n",
"print \"IC3=IE= %0.2f\"%(IE),\" A\" #Collector- Current\n",
"vC3=IC3*RL3\n",
"print \"vC3=IC3*RL3= %0.2f\"%(vC3),\" volts\" # Collector- voltage \n",
"vY=vC3-VBE5\n",
"print \"vY=vC3-VBE5= %0.2f\"%(vY),\" volts\" # Emitter follower output voltage for vB=V(0) \n",
"vC2=0 \n",
"vX=vC2-VBE4\n",
"print \"vX=vC2-VBE4= %0.2f\"%(vX),\" volts\" # Emitter follower output voltage for vB=V(0) \n",
"VBEr=(V_0)-VE\n",
"print \"Base -Emitter reverse voltage,VBEr=V(0)-VE= %0.2f\"%(VBEr),\" volts\"#Base- Emitter junction reverse voltage ,this is sufficient to keep T1 and T2 off since threshold =0.6V\n",
"print \"Transistor T1 and T2 off since VBEr < V_gamma\" # Since VBEr < V_gamma hence T1 and T2 off\n",
"\n",
"print \"part(ii)\"# part(ii)of question\n",
"IC2=IE\n",
"VBE=0.7 \n",
"vB=V_1\n",
"IC3=0\n",
"VC3=0\n",
"vY=VC3-VBE5\n",
"print \"vY=VC3-VBE= %0.2f\"%(vY),\" volts\"# Emitter follower output voltage for SECOND CASE for vB=V(1) \n",
"VE=vB-VBE\n",
"print \"VE=vB-VBE= %0.2f\"%(VE),\" volts\" # Emitter- voltage \n",
"VBE3=VREF-VE\n",
"print \"VBE3=VREF-VE= %0.2f\"%(VBE3),\" volts\"#Base- Emitter junction voltage\n",
"print \"VBE3 is smaller than V_gamma,hence T3 is off\"\n",
"IC2=(VEE-VE)/RE\n",
"print \"IC2=(VEE-VE)/RE= %0.2f\"%(IC2),\" A\" #Collector- Current for T2(transistor)\n",
"vC2=IC2*RL2\n",
"print \"vC2=IC2*RL2= %0.2f\"%(vC2),\" volts\" # Collector- voltage for T2\n",
"vX=vC2-VBE4\n",
"print \"vX=vC2-VBE4= %0.2f\"%(vX),\" volts\" # Emitter follower output voltage for vB=V(1)\n",
"\n",
"print \"part(iii)\"# part(iii)of question \n",
"VE3=-1.99\n",
"print \"VE3=VE= %0.2f\"%(VE3),\" volts\" # Transistor T3 Emitter- voltage ,when T3 is conducting \n",
"VB3=VREF\n",
"print \"VB3=VREF= %0.2f\"%(VB3),\" volts\" # Base- voltage when T3 is conducting\n",
"IC3=(VEE-VE3)/RE# Collector current for T3 neglecting IB\n",
"print \"IC3=(VEE-VE3)/RE= %0.2f\"%(IC3),\" A\" #Collector- Current\n",
"VC3=IC3*RL3\n",
"print \"VC3=IC3*RL3= %0.2f\"%(VC3),\" volts\" # Collector- voltage when T3 is conducting \n",
"VCB3=VC3-VB3\n",
"print \"VCB3=VC3-VB3= %0.2f\"%(VCB3),\" volts\" # Base- voltage when T3 is conducting \n",
"#All parameters have appropriate signs for npn BJT hence BJT in active region not in saturation in which VCB will have a (-)value\n",
"print \"All parameters have appropriate signs for npn BJT hence BJT in active region\" \n",
"\n",
"\n",
"# NOTE: Author ha not used any symbol for Base- Emitter junction reverse voltage But I have used 'VBEr' for it.\n",
"# ERROR :sign of IE is given wrong in the book in part(i) and sign of IC2 in part(ii)\n",
"# In part(i) Correct Formulae of vC3 is vC3 =IC3*RL3 but given in book is vC3 =(-)IC3*RL3 because author has included the (-)ive sign or the polarity of IC3 in the formulae \n",
"# IN book in part(ii) mistakenly it is written as vB=V_0 =-0.7 V but Correct expression is vB=V_1=-0.7 V because vB is at high at V_1=-0.7 V\n",
"# In part(ii) Author has used formulae vC2=-IC2*RL2 because he has included the (-)ive sign of the IC2 in the formulae but I have used vC2=IC2*RL2 to remove any ambiguity in program"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9_11 Page No. 292"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"VIL= -1.48 V\n",
"VIH= -1.10 V\n",
"VOL= -1.63 V\n",
"VOH= -0.98 V\n",
"NML=VIL-VOL= 0.15 V\n",
"NMH=VOH-VIH= 0.12 V\n"
]
}
],
"source": [
"from __future__ import division \n",
"VIL=-1.475\n",
"print \"VIL= %0.2f\"%(VIL),\" V\" # Minimum input voltage level for which output is maximum\n",
"VIH=-1.105\n",
"print \"VIH= %0.2f\"%(VIH),\" V\" # Maximum input voltage level for which output is minimum\n",
"VOL=-1.63\n",
"print \"VOL= %0.2f\"%(VOL),\" V\" # Minimum output voltage level for maximum input level\n",
"VOH=-0.98\n",
"print \"VOH= %0.2f\"%(VOH),\" V\" # Maximum output voltage level for minimum input level\n",
"NML=VIL-VOL\n",
"print \"NML=VIL-VOL= %0.2f\"%(NML),\" V\" # Low level noise immunities\n",
"NMH=VOH-VIH\n",
"print \"NMH=VOH-VIH= %0.2f\"%(NMH),\" V\" # High level noise immunities"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|