summaryrefslogtreecommitdiff
path: root/Electronic_Principles_/Chapter_9_New.ipynb
blob: f0e0aec77088ecef9e807ddceced21911c4d2061 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "CHAPTER 9 AC MODELS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9-1, Page 289"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 9.1.py\n",
      "#Using figure 9-1a, if R=2KOhm & the frequency range is from 20Hz to 20 KHz, \n",
      "#find C nedded to act as a good coupling capacitor.\n",
      "\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "f=20                  #frequency(Hz)\n",
      "R=2                   #Resistance(KOhm)\n",
      "\n",
      "#Calculation\n",
      "XC=0.1*R                     #Capacitive reactance(Ohm)\n",
      "C=(1/(2*math.pi*f*XC))*1000     #Capacitance(uF)\n",
      "\n",
      "#Result\n",
      "print 'Capacitance C = ',round(C,2),'uF'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Capacitance C =  39.79 uF\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9-2, Page 293"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 9.2.py\n",
      "#In figure 9-7, the input frequency of V is 1KHz. \n",
      "#What value of C nedded to effectively short point E to ground?\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "f=1                      #frequency(KHz)\n",
      "R1=600                   #Resistance1(Ohm)\n",
      "R2=1000                  #Resistance2(Ohm)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "RTH=R1*R2/(R1+R2)            #Thevenin resistance(Ohm)\n",
      "XC=0.1*RTH                   #Capacitive reactance(Ohm)\n",
      "C=(1/(2*math.pi*f*XC))*1000     #Capacitance(uF)\n",
      "\n",
      "#Result\n",
      "print 'Capacitance C = ',round(C,2),'uF'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Capacitance C =  4.24 uF\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9-3, Page 297"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 9.3.py\n",
      "#Using figure 9-9, find the maximum small signal emitter current.\n",
      "\n",
      "#Variable declaration\n",
      "VCC=10                  #collector voltage(V)\n",
      "RE=1                    #Emitter resistance(KOhm)\n",
      "VBE=0.7                 #Base-emitter voltage drop(V)\n",
      "VEE=2                   #Emitter supply voltage(V)\n",
      "\n",
      "#Calculation\n",
      "IEQ=(VEE-VBE)/RE        #Q point emitter current(mA)\n",
      "iepp=0.1*IEQ*1000       #small signal emitter current(uA) \n",
      "\n",
      "#Result\n",
      "print 'Q point emitter current IEQ = ',IEQ,'mA'\n",
      "print 'Small signal emitter current iepp = ',iepp,'uApp'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Q point emitter current IEQ =  1.3 mA\n",
        "Small signal emitter current iepp =  130.0 uApp\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9-4, Page 301"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 9.4.py\n",
      "#What does re' equal in the base-biased amplifier of figure 9-15a? \n",
      "\n",
      "#Variable declaration\n",
      "VCC=30                  #Supply voltage(V)\n",
      "RC=5                    #Collector resistance (KOhm)\n",
      "RL=100                  #Emitter resistance (KOhm)\n",
      "RB=1                    #Base resistance (MOhm)\n",
      "VBE=0.7                 #Base-emitter voltage drop(V)\n",
      "Bdc=100                 #current gain\n",
      "\n",
      "#Calculation\n",
      "IB=(VCC-VBE)/RB         #Base current(mA)\n",
      "IE=Bdc*IB/1000          #Emitter current(mA)\n",
      "re=25/IE                #AC resistance(Ohm)\n",
      "\n",
      "#Result\n",
      "print 'Emitter current IE = ',IE,'mA'\n",
      "print 'AC resistance re\\' = ',round(re,2),'Ohm'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Emitter current IE =  2.93 mA\n",
        "AC resistance re' =  8.53 Ohm\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9-5, Page 302"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 9.5.py\n",
      "#What does re' equal in figure 9-15b? \n",
      "\n",
      "#Variable declaration\n",
      "VCC=10                  #collector voltage(V)\n",
      "RC=3.6                  #Collector resistance (KOhm)\n",
      "RE=1                    #Emitter resistance (KOhm)\n",
      "R1=10                   #Base resistance1 (KOhm)\n",
      "R2=2.2                  #Base resistance2 (KOhm)\n",
      "VBE=0.7                 #Base-emitter voltage drop(V)\n",
      "\n",
      "#Calculation\n",
      "VBB=(R2/(R1+R2))*VCC    #Base voltage(V)\n",
      "VE=VBB-VBE              #Emitter voltage(V)\n",
      "IE=VE/RE                #Emitter current(mA)\n",
      "re=25/IE                #AC resistance(Ohm)\n",
      "\n",
      "#Result\n",
      "print 'Emitter current IE = ',round(IE,2),'mA'\n",
      "print 'AC resistance re\\' = ',round(re,2),'Ohm'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Emitter current IE =  1.1 mA\n",
        "AC resistance re' =  22.66 Ohm\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9-6, Page 302"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 9.6.py\n",
      "#What is the ac resistance of emitter diode for the TSEB amplifier of figure 9-15c? \n",
      "\n",
      "#Variable declaration\n",
      "VCC=10                  #collector voltage(V)\n",
      "RC=3.6                  #Collector resistance (KOhm)\n",
      "RE=1                    #Emitter resistance (KOhm)\n",
      "RB=2.7                  #Base resistance (KOhm)\n",
      "VBE=0.7                 #Base-emitter voltage drop(V)\n",
      "VEE=2                   #emitter voltage(V)\n",
      "\n",
      "#Calculation\n",
      "VE=VEE-VBE              #Emitter to ground voltage(V)\n",
      "IE=VE/RE                #Emitter current(mA)\n",
      "re=25/IE                #AC resistance(Ohm)\n",
      "\n",
      "#Result\n",
      "print 'Emitter current IE = ',IE,'mA'\n",
      "print 'AC resistance re\\' = ',round(re,2),'Ohm'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Emitter current IE =  1.3 mA\n",
        "AC resistance re' =  19.23 Ohm\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}