1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"CHAPTER 15 Thyristors"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15-1, Page 521"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"VB=10 #breakover voltage(V)\n",
"Vin=15 #input voltage(V)\n",
"R=100.0 #resistance (Ohm)\n",
"\n",
"I1=1000*Vin/R #diode current ideally(mA)\n",
"I2=1000*(Vin-0.7)/R #diode current with second approx.(mA)\n",
"I3=1000*(Vin-0.9)/R #diode current more accurately(mA)\n",
"\n",
"print 'Diode current ideally ID1 = ',I1,'mA'\n",
"print 'Diode current with second approx. ID2 = ',I2,'mA'\n",
"print 'Diode current more accurately ID3 = ',I3,'mA'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Diode current ideally ID1 = 150.0 mA\n",
"Diode current with second approx. ID2 = 143.0 mA\n",
"Diode current more accurately ID3 = 141.0 mA\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15-2, Page 525"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Ih=4*10**-3 #holding current(mA)\n",
"R=100.0 #resistance (Ohm)\n",
"Vs=15 #input voltage (V)\n",
"\n",
"Vin=0.7+(Ih*R) #new input voltage(V)\n",
"\n",
"print 'New input voltage Vin = ',Vin,'V'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"New input voltage Vin = 1.1 V\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15-3, Page 525"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"R=2.0*10**3 #resistance (Ohm)\n",
"C=0.02*10**-6 #capacitance (F)\n",
"VB=10 #breakdown voltage(V)\n",
"\n",
"RC=R*C #Time constant(s)\n",
"T=0.2*RC #period (s)\n",
"f=T**-1 #frequency(Hz) \n",
"\n",
"print 'time constant RC = ',RC*10**6,'us'\n",
"print 'Period T = ',T*10**6,'us'\n",
"print 'Frequency = ',f/1000,'KHz'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"time constant RC = 40.0 us\n",
"Period T = 8.0 us\n",
"Frequency = 125.0 KHz\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15-4, Page 531"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"It=7*10**-3 #trigger current(mA)\n",
"R1=100.0 #resistance (Ohm)\n",
"R2=1*10**3 #resistance (Ohm)\n",
"Vt=0.75 #trigger voltage (V)\n",
"Ih=6*10**-3 #holding current(mA)\n",
"\n",
"Vin=Vt+(It*R2) #minimum input voltage(V)\n",
"VCC=0.7+(Ih*R1) #supply voltage for turning of SCR(V)\n",
"\n",
"print 'Minimum input voltage Vin = ',Vin,'V'\n",
"print 'supply voltage for turning of SCR VCC = ',VCC,'V'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Minimum input voltage Vin = 7.75 V\n",
"supply voltage for turning of SCR VCC = 1.3 V\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15-5, Page 532"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"IGT=200*10**-6 #trigger current(mA)\n",
"VGT=1 #trigger voltage(V) \n",
"R1=900.0 #resistance (Ohm)\n",
"R2=100.0 #resistance (Ohm)\n",
"C=0.2*10**-6 #capacitance (F)\n",
"Vt=0.75 #trigger voltage (V)\n",
"Ih=6*10**-3 #holding current(mA)\n",
"R=1*10**3 #Resistance (Ohm) \n",
"\n",
"RTH=R1*R2/(R1+R2) #Thevenin resistance (Ohm)\n",
"Vin=VGT+(IGT*RTH) #input voltage needed to trigger(V)\n",
"Vp=10*Vin #Output voltage at SCR firing point(V)\n",
"RC=C*(R/2) #time constant (s)\n",
"T=RC*0.2 #period (s)\n",
"f=1/T #frequency (Hz)\n",
"\n",
"print 'peak output voltage Vpeak = ',Vp,'V'\n",
"print 'time constant RC = ',RC*10**6,'us'\n",
"print 'Period T = ',T*10**6,'us'\n",
"print 'Frequency = ',f/1000,'KHz'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"peak output voltage Vpeak = 10.18 V\n",
"time constant RC = 100.0 us\n",
"Period T = 20.0 us\n",
"Frequency = 50.0 KHz\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15-6, Page 536"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Vz=5.6 #breakdown voltage(V)\n",
"VGT1=0.75 #trigger voltage (V) \n",
"VGT2=1.5 #worst case maximum trigger voltage(V) \n",
"Vz2=6.16 #break down voltage with 10% tolerance (V)\n",
"\n",
"VCC1=Vz+VGT1 #supply voltage(V) \n",
"VCC2=VGT2+Vz2 #Over voltage (V)\n",
"\n",
"print 'supply voltage VCC1 = ',VCC1,'V'\n",
"print 'supply over voltage VCC2 = ',VCC2,'V'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"supply voltage VCC1 = 6.35 V\n",
"supply over voltage VCC2 = 7.66 V\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15-7, Page 539"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math # This will import math module\n",
"\n",
"C=0.1*10**-6 #capacitance (F)\n",
"f=60 #frequency (Hz)\n",
"R=26*10**3 #resistance(KOhm)\n",
"Vm=120 #input ac voltage(V)\n",
"\n",
"XC=(2*math.pi*f*C)**-1 #capacitive reactance(Ohm)\n",
"ZT=((R**2)+(XC**2))**0.5 #impedance (Ohm)\n",
"thetaz=math.atan2(-XC,R)*180/math.pi #angle (deg)\n",
"IC=Vm/ZT #Current through C(A)\n",
"VC=IC*XC #voltage across C(V)\n",
"thetac=180+thetaz #conduction angle(deg)\n",
"\n",
"print 'Capacitor reactance XC = ',round((XC/1000),2),'KOhm'\n",
"print 'impedance ZT = ',round((ZT/1000),2),'KOhm'\n",
"print 'firing angle = ',round(thetaz,2),'deg'\n",
"print 'Current through C, IC = ',round((IC*1000),2),'mA'\n",
"print 'voltage across C, VC = ',round(VC,2),'V'\n",
"print 'conduction angle = ',round(thetac,2),'deg'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Capacitor reactance XC = 26.53 KOhm\n",
"impedance ZT = 37.14 KOhm\n",
"firing angle = -45.57 deg\n",
"Current through C, IC = 3.23 mA\n",
"voltage across C, VC = 85.7 V\n",
"conduction angle = 134.43 deg\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15-8, Page 546"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"C=1*10**-6 #capacitance (F)\n",
"R1=22.0 #resistance (Ohm)\n",
"R2=82*10**3 #resistance(KOhm)\n",
"Vs=75 #input voltage(V)\n",
"\n",
"I=Vs/R1 #current through 22Ohm resistor (A)\n",
"\n",
"print 'current through 22Ohm resistor I = ',round(I,2),'A'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"current through 22Ohm resistor I = 3.41 A\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15-9, Page 547"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Vdb=32.0 #diac break down voltage (V)\n",
"VTT=1 #triac trigger voltage(V)\n",
"\n",
"Vin=VTT+Vdb #input voltage for triggering triac\n",
"\n",
"print 'input voltage for triggering triac vin = ',Vin,'V'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"input voltage for triggering triac vin = 33.0 V\n"
]
}
],
"prompt_number": 27
}
],
"metadata": {}
}
]
}
|