1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 6:Instrument Transformers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.1,Page No:367"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"actual tranformation ratio = 240.77\n",
"phase angle = 4.57 ° \n",
"maximum flux density in core = 0.0938 Wb/m**2\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"Np = 1; #number of primary turns\n",
"Ns = 240; #number of secondary turns\n",
"Is = 5; #secondary current in A\n",
"Re = 1.2; #external burden in Ω \n",
"mmf = 96; #magnetomotive force in AT\n",
"Ac = 1200*10**-6; #cross section area mm**2\n",
"f = 50; #frequency in Hz\n",
"\n",
"#calculation\n",
"Kt = Ns/float(Np); #turns ratio\n",
"Es = Is*Re; #voltage induced in secondary winding in V\n",
"Im = mmf/float(Np); #secondary current in A\n",
"Ip = math.sqrt(((Kt*Is)**2)+((Im)**2)); #primary current in A\n",
"Kact = Ip/float(Is); #actual transformation ratio \n",
"x = Im/float(Kt*Is); #tangential component\n",
"theta = math.atan(x); #phase angle \n",
"phimax = Es/float(4.44*f*Ns);\n",
"Bmax = phimax/float(Ac);\n",
"\n",
"#result\n",
"print'actual tranformation ratio = %3.2f'%Kact;\n",
"print'phase angle = %3.2f'%((theta*180)/float(math.pi)),'° ';\n",
"print'maximum flux density in core = %3.4f'%Bmax,'Wb/m**2';\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.2,Page No:368"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ratio error at full load = -0.0450 %\n",
"phase angle = 5.116677 degrees(equal to (3 minutes 4 seconds))\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"I0 = 1; #exciting current in A\n",
"Knom = 200; #current transformer ratio \n",
"Re = 1.1; #non inductive resistance in Ω \n",
"p = 0.45; #power factor \n",
"delta = 0;\n",
"Is = 5; #rated secondary winding current in A\n",
"\n",
"#calculations\n",
"alpha = 90-(((math.acos(p))*180)/float(math.pi));\n",
"Kt = Knom #since no turn compenasation\n",
"y = math.sin(((delta+alpha)*math.pi)/float(180));\n",
"Kact = Kt+((I0/float(Is))*(y)); #actual transformation ratio\n",
"r = ((Knom-Kact)/float(Kact))*100; #ratio error\n",
"k =math.cos(((delta+alpha)*math.pi)/float(180));\n",
"theta = (180/math.pi)*((I0*k)/float(Kt*Is)); #phase angle degreess\n",
"\n",
"#calculation\n",
"print'ratio error at full load = %3.4f'%r,'%';\n",
"print'phase angle = %f'%(theta*100),'degrees(equal to (3 minutes 4 seconds))';\n",
"\n",
"\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.3,Page No:369"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"flux in the core = 1.5766e-04 wb\n",
"ratio error = -3.846 %\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variuable declaration\n",
"Knom = 200; #nominal ratio\n",
"Np = 1; #number of primary turns\n",
"R = 1.4; #secondary impendance in Ω \n",
"L = 1.4; #iron loss in W\n",
"I = 5; #current in A\n",
"d = 0; #load angle when burden is pure resistive \n",
"mmf = 80; #magnetomotive force in A\n",
"f = 50;\n",
"\n",
"#calculations\n",
"Kt = Knom; #turns ratio\n",
"Ns = Kt*Np; #number of secondary turns\n",
"Es = I*R; #secondary induced voltage in V\n",
"phimax = Es/float(4.44*f*Ns); #flux in core Wb\n",
"Ep = Es/float(Kt); #primary induced voltage in V\n",
"Iw = L/float(Ep); #loss component of exciting current in A\n",
"Im = mmf/float(Np); #magnetising current\n",
"Kact = Kt+(((Im*math.sin(d))+(Iw*math.cos(d)))/float(Is)); #actual ratio \n",
"r = (Knom-Kact)/float(Kact); #ratio error in %\n",
"r1 = r*100;\n",
"\n",
"#result\n",
"print'flux in the core = %3.4e'%phimax,'wb';\n",
"print'ratio error = %3.3f'%r1,'%';\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.4,Page No:370"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ratio error = -5.57 %\n",
"phase angle =2.01 °\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"Np = 1; #number of primary turns\n",
"Ns = 250; #number of secondary turns\n",
"Rp = 1.4; #resistance of secondary circuit in Ω\n",
"Xs = 1.1; #reactance of secondary circuit in Ω\n",
"Is = 5; #current in secondary winding in A\n",
"mmf = 80; #magnetomotive force in A\n",
"L = 1.1; #iron loss in W\n",
"\n",
"#calculations\n",
"Kt = Ns/float(Np); #turns ratio\n",
"Knom = Kt; \n",
"Rs = math.sqrt((Rp**2)+(Xs**2)); #secondary circuit impedance\n",
"cosd = Rp/float(Rs); \n",
"sind = Xs/float(Rs);\n",
"Es = Is*Rs; #secondary induced voltage in V\n",
"Ep = Es/float(Ns); #primary induced voltage in V\n",
"Iw = L/float(Ep); #loss of component reffering to primary winding in A\n",
"Im = mmf/float(Np); #magnetising current in A\n",
"Kact = Kt+(((Im*sind)+(Iw*cosd))/float(Is)); #actual transformation ratio\n",
"r = ((Knom-Kact)/float(Kact))*100; #ratio error in %\n",
"theta = (180/math.pi)*(((Im*cosd)-(Iw*sind))/float(Kt*Is)); #phase angle degreess\n",
"\n",
"#result\n",
"print'ratio error = %3.2f'%r,'%';\n",
"print'phase angle =%3.2f'%theta,'°';\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.5,Page No:371"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"actual ratio = 317.10\n",
"primary current = 1585.49 A\n",
"reduction in secondary winding turns = 17\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"Np = 1; #number of primary windings\n",
"Ns = 300; #umber of secondary windings\n",
"Re = 1; #ammeter ressistance in Ω\n",
"Xe = 0.55; #reactance in Ω\n",
"Rs = 0.3; #resistance if secondary winding in Ω\n",
"Xs = 0.25; #reactance of secondary winding in Ω\n",
"mmf = 90; # mmf for magnetisation\n",
"mmfc = 45; #mmf for core loss \n",
"Is = 5; #current in A\n",
"\n",
"#calculations\n",
"R = Rs+Re; #total secondarycircuit resistance in Ω\n",
"X = Xs+Xe; #total secondarycircuit reactance in Ω\n",
"delta = math.atan(X/float(R)); #secondary circuit phase angle \n",
"c = math.cos(delta);\n",
"s = math.sin(delta);\n",
"Kt = Ns/float(Np); #turn ratio \n",
"Im = mmf/float(Np); #magnetising current in A\n",
"Iw = mmfc/float(Np); #loss component in A\n",
"Kact = Kt+(((Im*math.sin(delta))+(Iw*math.cos(delta)))/float(Is)); #actual ratio\n",
"Ip = Kact*Is; #primary current A\n",
"Knom = Kt;\n",
"y = (((Im*math.sin(delta))+(Iw*math.cos(delta)))/float(Is));\n",
"Kt1 = (Knom)-(y);\n",
"Ns1 = Kt1*Np; #secondary winding turns\n",
"r = Ns-Ns1; #reduction in secondary winding turns\n",
"\n",
"#result\n",
"print'actual ratio = %3.2f'%Kact;\n",
"print'primary current = %3.2f'%Ip,'A';\n",
"print'reduction in secondary winding turns = %3.0f'%r;"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.6,Page No:372"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"actual ratio 101.12 °\n",
"phase angle 0.641 °\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"Np = 1; #number of primary windings\n",
"Ns = 100; #number of secondary windings\n",
"Knom = 100; #nominal ratio\n",
"Re = 1.45; #external burden non inductive in Ω\n",
"Rs = 0.25; #winding resistance in Ω\n",
"I0 = 1.8; #current in A\n",
"l = 38.4; #lagging angle with secondary voltage reversed in °\n",
"Is = 1; #current in secondary winding in A\n",
"delta = 0;\n",
"\n",
"\n",
"#calculations\n",
"Kt = Ns/float(Np); #turn ratio\n",
"Rt = Re+Rs; #totaal secondary circuit resistance in Ω\n",
"alpha = 90-l;\n",
"x = math.cos(((delta+alpha)*math.pi)/float(180));\n",
"Kact = Kt+((I0/float(Is))*x); #actual ratio\n",
"y = math.cos(((delta+alpha)*math.pi)/float(180));\n",
"theta = (180/float(math.pi))*((I0*y/float(Kt*Is))); #phase angle in °\n",
"\n",
"#result\n",
"print'actual ratio %3.2f'%Kact,'°';\n",
"print'phase angle %3.3f'%theta,'°';\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example:6.7,Page No:373"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ratio error -0.87 %\n",
"phase angle 0.1948\n",
"ratio error 0.08 %\n",
"phase angle 0.5386 °\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"Np = 1; #number of primary windings\n",
"Ns = 200; #number of secondary winding\n",
"Kt = 200; #actual ratio\n",
"Im = 8; #magnetising current in A\n",
"Iw = 5; #loss component in A\n",
"cosphi = 0.8; # leading by\n",
"Knom = 200; #transformer is rated \n",
"cosphi1 = 0.8; #lagging by\n",
"Is = 5; #current in A\n",
"\n",
"#calculations\n",
"sinphi = math.sqrt((1**2)-(cosphi**2));\n",
"Kact = Kt+(((Im*sinphi)+(Iw*cosphi))/float(Is)); #actual ratio\n",
"er = ((Knom-Kact)/float(Kact))*100; #error ratio\n",
"theta = (180/float(math.pi))*(((Im*cosphi)-(Iw*sinphi))/float(Kt*Is)); #phase angle\n",
"sinphi1 = -math.sqrt((1**2)-(cosphi1**2));\n",
"Kact1 = Kt+(((Im*sinphi1)+(Iw*cosphi1))/float(Is)); #actual ratio\n",
"er1 = ((Knom-Kact1)/float(Kact1))*100; #ratio error\n",
"theta1 = (180/float(math.pi))*(((Im*cosphi1)-(Iw*sinphi1))/float(Kt*Is)); #phase angle\n",
"\n",
"#result\n",
"print'ratio error %3.2f'%er,'%';\n",
"print'phase angle %3.4f'%theta;\n",
"print'ratio error %3.2f'%er1,'%';\n",
"print'phase angle %3.4f'%theta1,'°';\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"#Example:6.8,Page No:373"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ratio error -0.86 %\n",
"phase angle 0.4074\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"Np = 1; #number of primary windings\n",
"Ns = 99; #number of secondary winding\n",
"Rs = 0.4; #secondary winding resistance in Ω\n",
"Xs = 0.35; #secondary winding reactance in Ω\n",
"Knom = 100; #ratio \n",
"mmf = 6; #magnetising mmf in AT\n",
"lmmf = 8; #loss mmf in AT\n",
"V = 20; #voltage in VA\n",
"\n",
"\n",
"#calculations\n",
"Kt = Ns/float(Np); #actual ratio\n",
"Im = mmf/float(Np); #magnetising current in A\n",
"Iw = lmmf/float(Np); #loss component in A\n",
"Re = V/float(Is**2); #external reistance burden in Ω\n",
"R = Rs+Re; #resistance of total seccondary circuit in Ω\n",
"#reactance is zero \n",
"Xe = 0;\n",
"X = Xs+Xe; #reactance of total secondary circcuit burden in Ω\n",
"delta = ((math.atan(X/float(R))*180)/float(math.pi)); #phase angle\n",
"c = math.cos((delta*math.pi)/float(180));\n",
"s = math.sin((delta*math.pi)/float(180));\n",
"Kact = Kt+(((Im*s)+(Iw*c))/float(Is)); #actual ratio\n",
"er = ((Knom-Kact)/float(Kact))*100; #error ratio\n",
"theta = (180/float(math.pi))*(((Im*c)-(Iw*s))/float(Kt*Is)); #phase angle\n",
"\n",
"#result\n",
"print'ratio error %3.2f'%er,'%';\n",
"print'phase angle %3.4f'%theta;\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"#Example:6.9,Page No:374"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ratio error -1.198 %\n",
"phase angle 0.6531 °\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"Knom = 20; #nominal ratio of 100/5A\n",
"V = 20; #rated load in VA\n",
"Il = 0.18; #iron loss in W\n",
"Im = 1.4; #magnetising current in A\n",
"x = 4; #ratio of reactance to resistance \n",
"Ip = 100; #primary currnt widing in A\n",
"Is = 5; #current in secondary winding in A\n",
"\n",
"#calculations\n",
"Kt = Knom; #assuming the value of Kt\n",
"Ep = V/float(Ip); #voltage across primary winding in V\n",
"Iw = Il/float(Ep); #loss current of exciting current in A\n",
"delta = ((math.atan(1/float(x))*180)/float(math.pi)); #phase angle\n",
"c = math.cos((delta*math.pi)/float(180));\n",
"s = math.sin((delta*math.pi)/float(180));\n",
"Kact = Kt+(((Im*s)+(Iw*c))/float(Is)); #actual ratio\n",
"er = ((Knom-Kact)/float(Kact))*100; #error ratio\n",
"theta = (180/float(math.pi))*(((Im*c)-(Iw*s))/float(Kt*Is)); #phase angle\n",
"\n",
"#result\n",
"print'ratio error %3.3f'%er,'%';\n",
"print'phase angle %3.4f'%theta,'°';\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Example:6.10,Page No:382"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"phase angle error at no load -0.00156 °\n",
"Note:printing mistake in textbook,theta value is printed wrong\n",
"burden load in VA 15.34 V A\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"Kt = 10; #ratio of 1000/100volts potentia meter \n",
"Rp = 86.4; #primary resistance in Ω\n",
"Rs = 0.78; #secondary resistance in Ω\n",
"Xp = 62.5; #primary reactance in Ω\n",
"Xs = 102; #total equivalent reactance in Ω\n",
"I0 = 0.03; #no-load current in A\n",
"cosphi = 0.42; #power factor \n",
"cosgamma = 1; #since power factor = 1\n",
"Vs = 100; #voltage in V\n",
"\n",
"\n",
"#calculations\n",
"\n",
"sinphi = math.sqrt(1-(cosphi**2));\n",
"Im = I0*sinphi; #magnetising current in A\n",
"Iw = I0*cosphi; #loss current in A\n",
"\n",
"#theta = ((((Is/Kt)*((X*cosgamma)-(Rp*singamma)))+(Iw*Xp)-(Im*Rp))/float(Kt*Vs));\n",
"#since Is =0 \n",
"\n",
"theta = (((Iw*Xp)-(Im*Rp))/float(Kt*Vs));\n",
"singamma = math.sqrt(1-(cosgamma**2));\n",
"\n",
"#burden in VA,theta1 = 0,thus ((((Is/Kt)*((X*cosgamma)-(Rp*singamma)))+(Iw*Xp)-(Im*Rp))/float(Kt*Vs))=0\n",
"#(((Is/Kt)*((X*cosgamma)-(Rp*singamma)))+(Iw*Xp)-(Im*Rp)) =0\n",
"#Is/Kt = ((Im*Rp)-(Iw*Xp)))/float(((X*cosgamma)-(Rp*singamma)))\n",
"#assume x = ((X*cosgamma)-(Rp*singamma)),y = (Iw*Xp)-(Im*Rp)\n",
"#Is = Kt*(y/x)\n",
"\n",
"x = ((Xs*cosgamma)-(Rp*singamma));\n",
"y = (Im*Rp)-(Iw*Xp);\n",
"Is = Kt*(y/float(x)); #current in A\n",
"l = Vs*Is; # burden load in VA \n",
"\n",
"#result\n",
"print'phase angle error at no load %3.5f'%theta,'°';\n",
"print'Note:printing mistake in textbook,theta value is printed wrong';\n",
"print'burden load in VA %3.2f'%l,'V A'\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Example:6.11,Page No:383"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ratio error -0.7937 %\n",
"phase angle -0.3438 °\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declartion\n",
"Kt = 60.476; #turns ratio 3810/63 tranformer\n",
"Vs = 63; #secondary voltage in V\n",
"Rs = 2; #series resistance in Ω\n",
"Xs = 1; #reactance in Ω\n",
"R = 100; #resistance in Ω\n",
"X = 200; #reactance in Ω\n",
"\n",
"#calculations\n",
"\n",
"delta = ((math.atan(X/float(R))*180)/float(math.pi)); #phase angle\n",
"Z = math.sqrt((R**2)+(X**2)); #agnitude of impedance\n",
"\n",
"#Kact = Kt+(((Rs*c)+(Xs*s))/float(Vs/float(Is))); \n",
"#Vs/float(Is) = Z\n",
"\n",
"c = math.cos((delta*math.pi)/float(180));\n",
"s = math.sin((delta*math.pi)/float(180));\n",
"x =(Rs*c)+(Xs*s);\n",
"y = ((x*Kt)/float(Z));\n",
"Kact = Kt+y; #actual ratio\n",
"Knom = Kt; #nominal ration \n",
"er = ((Knom-Kact)/float(Kact))*100; #error ratio\n",
"theta = (180/float(math.pi))*(((Xs*c)-(Rs*s))/float(Z)); #phase angle\n",
"\n",
"\n",
"\n",
"#result\n",
"print'ratio error %3.4f'%er,'%';\n",
"print'phase angle %3.4f'%theta,'°';\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|