1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CHAPTER 12: INSTRUMENT CALIBRATION"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12-1, Page Number: 355"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"When scale reading is 10 V and precise voltage is 9.5 V,\n",
"Error=- -5.0 % of reading= -0.5 % of full scale\n",
"\n",
"When scale reading is 50 V and precise voltage is 51.7 V,\n",
"Error= + 3.4 % of reading= + 1.7 % of full scale\n"
]
}
],
"source": [
"import math\n",
"\n",
"#Variable Declaration\n",
"\n",
"#For Scale reading =10 V, and precise voltage=9.5 V\n",
"scale_reading=10 #Scale reading is 10 V\n",
"\n",
"precise_reading=9.5 #Precise voltage is 9.5 V\n",
"\n",
"error=(precise_reading-scale_reading)/scale_reading*100 #Error in percentage form w.r.t reading\n",
"\n",
"error_fullscale=(precise_reading-scale_reading)*100/100 #Error with respect to full scale \n",
"\n",
"\n",
"print \"When scale reading is 10 V and precise voltage is 9.5 V,\"\n",
"print \"Error=-\",round(error,1),\"% of reading=\",error_fullscale, \"% of full scale\"\n",
"\n",
"print \n",
"#For Scale reading =50 V, and precise voltage=51.7 V\n",
"scale_reading=50 #Scale reading is 50 V\n",
"precise_reading=51.7 #Precise voltage is 51.7 V\n",
"error=(precise_reading-scale_reading)/scale_reading*100 #Error in percentage form \n",
"error_fullscale=(precise_reading-scale_reading)*100/100\n",
"\n",
"print \"When scale reading is 50 V and precise voltage is 51.7 V,\"\n",
"print \"Error= +\",round(error,1),\"% of reading= +\",error_fullscale, \"% of full scale\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12-2, Page Number: 357"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Correction figure= -6 W\n",
"Error= -5 %\n"
]
}
],
"source": [
"import math\n",
"\n",
"#Variable Declaration\n",
"\n",
"V=114 #Measured Voltage in V\n",
"I=1 #Measured Current in A\n",
"W=120 #Full Scale wattage in W\n",
"\n",
"P=V*I #Wattmeter Power\n",
"error=P-W #Correction figure\n",
"print \"Correction figure=\",error,\"W\"\n",
"\n",
"error=error*100/W #Error %\n",
"\n",
"print \"Error=\",error,\"%\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12-3, Page Number 361"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Therefore Vo= 5 V ± 700.0 micro volt\n"
]
}
],
"source": [
"import math\n",
"\n",
"#Variable Declaration\n",
"\n",
"R4=1125.0\n",
"R5=4017.9\n",
"Vz=6.4\n",
"accuracy=100.0/10**6 #100ppm\n",
"\n",
"#Calculation\n",
"#Maximum and Minimum values of resistances in ohm\n",
"R4max=R4*(1+accuracy) \n",
"R4min=R4*(1-accuracy)\n",
"R5max=R5*(1+accuracy)\n",
"R5min=R5*(1-accuracy)\n",
"\n",
"#Maximum and minimum zener voltages in V\n",
"Vzmax=Vz+Vz*0.01/100 #Maximum voltage is Vz+0.01% of Vz\n",
"Vzmin=Vz-Vz*0.01/100 #Minimum voltage is Vz-0.01% of Vz\n",
"\n",
"#Maximum and minimum output voltages in V\n",
"Vomax=Vzmax*(R5max/(R4min+R5max)) #Output is maximum when Vz is maximum, R5 is minimum and R4 is maximum\n",
"Vomin=Vzmin*(R5min/(R4max+R5min)) #Output is minimum when Vzi mimimum, R5 is maximum and R4 is minimum\n",
"Vo=Vz*(R5/(R4+R5))\n",
"\n",
"error=round(Vomax-Vo,4) #Deviation of output voltage from theoretical value \n",
"\n",
"#Result\n",
"print \"Therefore Vo=\",int(Vo),\"V ±\",error*10**6,\"micro volt\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Example 12-4, Page Number: 364"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"When the potentiometer is calibrated, I= 20.0 mA\n",
"R1= 50.0 ohm\n",
"\n",
"Vx= 1.886 V\n",
"\n",
"The value of R2 to limit standard cell current to 20 micro ampere is 200 kilo ohm\n"
]
}
],
"source": [
"import math\n",
"\n",
"#Variable Declaration\n",
"\n",
"Rab=100 #Resistance of wire AB, in ohm\n",
"Vb1=3 #Battery B1, terminal voltage(V)\n",
"Vb2=1.0190 #Standard Cell Voltage(V) \n",
"l=50.95 #Length BC, in cm\n",
"\n",
"#At Calibration\n",
"\n",
"Vbc=Vb2 \n",
"volt_per_unit_length=Vbc/l #in V/cm\n",
"Vab=100*volt_per_unit_length #in V \n",
"I=Vab/Rab #Ohm's Law\n",
"Vr1=Vb1-Vab #KVL \n",
"R1=Vr1/I \n",
"\n",
"#At 94.3cm\n",
"Vx=94.3*volt_per_unit_length\n",
"\n",
"#Worst case: Terminal voltage of B2 or B1 may be reversed\n",
"#Total voltage producing current flow through standard cell is\n",
"\n",
"Vt=Vb2+Vb1\n",
"R2=Vt/(20*10**-6) #Value of resistance R2 to limit standard cell current to a maximum of 20 micro ampere\n",
"\n",
"\n",
"print \"When the potentiometer is calibrated, I=\",I*10**3,\"mA\"\n",
"print \"R1=\",R1,\"ohm\"\n",
"\n",
"print \n",
"print \"Vx=\",round(Vx,3),\"V\"\n",
"print \n",
"print \"The value of R2 to limit standard cell current to 20 micro ampere is \",int(R2*10**-3),\"kilo ohm\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Example 12-5, Page Number: 367"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The instrument can measure a maximum of 1.6 V\n",
"Instrument resolution=± 0.2 mV\n"
]
}
],
"source": [
"import math\n",
"\n",
"R3=509.5 #in ohm\n",
"R4=290.5 #in ohm\n",
"R13=100 #in ohm\n",
"l=100 #in cm\n",
"Vb2=1.0190 #in V(Standard Cell Voltage)\n",
"\n",
"Vr3=Vb2 \n",
"I1=Vb2/R3 #Ohm's Law \n",
" \n",
"#Maximum measurable voltage:\n",
"Vae=I1*(R3+R4) #Maximum measurable voltage in V\n",
"\n",
"#Resolution\n",
"I2=Vae/(8*R13) #in A \n",
"\n",
"Vab=I2*R13\n",
"slidewire_vper_length=Vab/l #in V/mm\n",
"\n",
"instrument_resolution=slidewire_vper_length*1 #As contact can be read within 1 mm, 1 is multiplied\n",
"\n",
"print \"The instrument can measure a maximum of\",Vae,\"V\"\n",
"print \"Instrument resolution=±\",instrument_resolution*10**2,\"mV\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|