1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
{
"metadata": {
"name": "Chapter_4"
},
"nbformat": 2,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"source": [
"<h1>Chapter 4: Bipolar Junction Transistors (BJTs)<h1>"
]
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 4.1, Page Number: 120 <h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"",
"Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].",
"For more information, type 'help(pylab)'."
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"I_C=3.65*10**-3; #collector current in amperes",
"I_B=50*10**-6; #base current in amperes",
"",
"#calculation",
"B_DC=I_C/I_B; #B_DC value",
"I_E=I_B+I_C; #current in ampere",
"",
"# result",
"print \"B_DC = %d \" %B_DC",
"print \"Emitter current = %.4f ampere\" %I_E"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"B_DC = 73 ",
"Emitter current = 0.0037 ampere"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 4.2, Page Number: 121<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"V_BE=0.7; # voltage in volt",
"B_DC=150; # voltage in volt",
"V_BB=5; # voltage in volt",
"V_CC=10; # voltage in volt",
"R_B=10*10**3; # resistance in ohm",
"R_C=100; # resistance in ohm",
"",
"#calculation",
"I_B=(V_BB-V_BE)/R_B; #base current in amperes",
"I_C=B_DC*I_B; #collector current in amperes",
"I_E=I_C+I_B; #emitter current in amperes",
"V_CE=V_CC-I_C*R_C; #collector to emitter voltage in volts",
"V_CB=V_CE-V_BE; #collector to base voltage in volts",
"",
"# result",
"print \"base current = %.5f amperes\" %I_B",
"print \"collector current = %.4f amperes\" %I_C",
"print \"emitter current = %.5f amperes\" %I_E",
"print \"collector to emitter voltage =%.2f volts\" %V_CE",
"print \"collector to base voltage =%.2f volts\" %V_CB"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"base current = 0.00043 amperes",
"collector current = 0.0645 amperes",
"emitter current = 0.06493 amperes",
"collector to emitter voltage =3.55 volts",
"collector to base voltage =2.85 volts"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 4.3, Page Number: 123<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"",
"import pylab as py",
"import numpy as np",
"",
"#variable declaration",
"beta=100 # current gain",
"print'Ideal family of collector curve'",
"",
"ic1 = arange(0.00001, 0.45, 0.0005)",
"ic2 = arange(0.00001, 0.5, 0.0005)",
"ic3 = arange(0.00001, 0.6, 0.0005)",
"ic4 = arange(0.00001, 0.7, 0.0005)",
"vcc1=ic1*0.5/0.7",
"vcc2=ic2*1.35/0.7",
"vcc3=ic3*2/0.7",
"vcc4=ic4*2.5/0.7",
"m1=arange(0.45,5.0,0.0005)",
"m2=arange(0.5,5.0,0.0005)",
"m3=arange(0.6,5.0,0.0005)",
"m4=arange(0.7,5.0,0.0005)",
"",
"plot(ic1,vcc1,'b')",
"plot(ic2,vcc2,'b')",
"plot(ic3,vcc3,'b')",
"plot(ic4,vcc4,'b')",
"plot(m1,0.32*m1/m1,'b')",
"plot(m2,0.96*m2/m2,'b')",
"plot(m3,1.712*m3/m3,'b')",
"plot(m4,2.5*m4/m4,'b')",
"",
"ylim( (0,3) )",
"ylabel('Ic(mA)')",
"xlabel('Vce(V)')",
"title('Ideal family of collector curve')"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Ideal family of collector curve"
]
},
{
"output_type": "pyout",
"prompt_number": 4,
"text": [
"<matplotlib.text.Text at 0xa11e74c>"
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEXCAYAAABLZvh6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVPW6B/DvIHjhIkop4IBg4gVSAcVIQ0UNTVOizBQz\nUalQj6nVfmrno0dteyzTrWm2Pdb2caeluPV4QbnkJUa8czS8ZB4vKHIVREEhlevv/LFiYGCAQefC\nzPp+nocn1qzLvIy0XtbvXb93KYQQAkREJEtWpg6AiIhMh0mAiEjGmASIiGSMSYCISMaYBIiIZIxJ\ngIhIxpgEZCwtLQ1WVlaorKx86mN5enri8OHDWtc9evQIY8eORbt27TBhwoSnfq+a0tPT4eDggKo7\nnYODg7Fx40a9vgcA7N69G+7u7nBwcMD58+f1ckyVSgV3d3f1ckOfIZGhMAlYOGOdWBQKBRQKhdZ1\nO3fuRF5eHu7du4ft27fr9X07d+6MoqIi9Xs3FMfT+Mtf/oJ//OMfKCoqgq+vr96PD+gn9qlTp2Lh\nwoV6iojkgEnAwhnqpNgUt27dQvfu3WFlZZ6/bkIIpKenw8fHx9ShGJw+rgpNcWx6cub5fyU9kYqK\nCvzlL39Bhw4d0LVrV8TGxmqsv3//PiIjI9GpUye4ublh4cKF6v9xU1NTMWzYMDz77LPo0KEDJk+e\njPv37zf6nosWLcLf/vY3bN++HQ4ODti0aRNu3LjR4LE8PT2xcuVK9OnTBw4ODoiMjERubi5GjRoF\nR0dHhISEoLCwEED9Q1qlpaVwcnLCb7/9pn4tLy8PdnZ2uHv3bp04hRBYunQpPD094ezsjIiICDx4\n8AAlJSVwcHBARUUFfH190a1bN60/56VLlxASEoJnnnkGLi4u+OKLLwAAJSUlmDdvHpRKJZRKJT78\n8EOUlpY2+rkJIfDll1/Cy8sLzz77LCZMmICCggL1+mPHjmHgwIFo3749OnfujB9++AHff/89tm7d\niq+++goODg547bXXAACXL19GcHAw2rdvj169emHfvn3q40ydOhUzZ87E6NGjYW9vD5VKVSeWe/fu\nYdq0aVAqlXBycsLrr78OAPjXv/6FQYMGaWxrZWWFGzduaBz71Vdfhb29PVauXAlXV1eNf6vdu3er\nr6wqKysb/JnJQARZNE9PT3H48GEhhBDr168XPXv2FJmZmeLevXsiODhYWFlZiYqKCiGEEGFhYWLG\njBni4cOHIi8vT7zwwgtiw4YNQgghrl+/Lg4dOiRKS0vFnTt3xODBg8W8efO0vk9tixcvFu+88456\nWZdjDRgwQOTl5YmsrCzRsWNH4e/vL86dOyceP34shg0bJpYsWSKEEOLmzZtCoVCof4bg4GCxceNG\nIYQQs2bNEp9++qn6uF9//bUIDQ3VGuPGjRuFl5eXuHnzpiguLhZvvPGGRswKhUKkpqZq3ffBgwfC\nxcVFrFq1SpSUlIiioiJx+vRpIYQQCxcuFAMGDBB37twRd+7cEQMHDhQLFy4UQgiRmJgo3NzctH6G\nX3/9tRgwYIDIysoSpaWlIioqSoSHhwshhEhLSxMODg4iOjpalJeXi7t374pz584JIYSYOnWq+vhC\nCFFaWiq6du0qvvjiC1FWViZ++eUX4eDgIK5cuSKEECIiIkI4OjqKEydOCCGEePz4cZ2fb/To0WLi\nxImisLBQlJWViaSkJCGEEJs2bRJBQUEa29b8nLQdu2vXruLgwYPq7d98802xfPnyRn9mMhwmAQtX\n88QydOhQ9UldCCEOHDigPoHevn1btGrVSjx69Ei9fuvWrWLo0KFaj7t7927h7++v9X1qW7RokZg8\neXK9MWo71tatW9XL48aNE7NmzVIvf/PNNyIsLEwI0XASOHXqlOjcubN6v379+okdO3ZojWHYsGFi\n/fr16uUrV64IGxsb9XEbSgJbt24Vffv21bqua9euIj4+Xr38888/C09PTyFEw0nA29tb4/PMzs4W\nNjY2ory8XCxbtky88cYbWt9v6tSpYsGCBerlpKQk4eLiorFNeHi4WLx4sRBCOlFHRERoPVbV+1pZ\nWYnCwsI663RJArWPvWDBAjF9+nQhhJQ87ezsRHp6eoM/c9W/ARmGtamvRMh4cnJyNO5G6dy5s/r7\nW7duoaysDK6ururXKisr1dvk5uZi7ty5OHbsGIqKilBZWQknJ6cnikOXYzk7O6u/b9OmjcZy69at\nUVxc3Oj7BAYGok2bNlCpVHBxcUFqaipCQ0O1bpuTkwMPDw/1cufOnVFeXo7c3FyNz0SbjIwMPPfc\nc1rXZWdn1zludnZ2o7GnpaXh9ddf16ijWFtbIzc3F5mZmfW+n7b3r/lvDgAeHh7qGBQKBdzc3Ord\nPyMjA05OTnB0dNTp/WrSduxJkyZh4MCBWL9+PXbt2oV+/fqp42voZ27s34CeHGsCMuLq6or09HT1\ncs3v3d3d0apVK9y9excFBQUoKCjA/fv3cfHiRQDA/Pnz0aJFC/z222+4f/8+tmzZonOhr3Zh+kmO\nJZ6w2W1ERAR+/PFHbNmyBePHj0fLli21btepUyekpaWpl9PT02Ftba2RfOrTuXNn9Ti4Lsft1KmT\nTsdMSEhQ/1sUFBTg4cOH6NSpE9zd3ZGamqp1v9qfdadOnZCRkaHx+d26dQtKpbLRGADp9+LevXta\n6z92dnZ4+PChevn27duNHs/b2xseHh6Ij4/H1q1bMWnSJPW6+n5mJgDDYhKQkbfeegtr165FVlYW\nCgoK8OWXX6rXubq6YsSIEfjoo4/Uf52npqYiKSkJAFBcXAw7Ozu0bdsWWVlZWLFihc7vW/sE/jTH\naur7TZ48Gbt27cJPP/2EKVOm1LtPeHg4Vq9ejbS0NBQXF2P+/PmYOHGiTnc0jRkzBjk5OVizZg1K\nSkpQVFSE5ORk9XGXLl2K/Px85Ofn4/PPP8c777zT6DFnzJiB+fPnqxP1nTt3EBMTAwB4++23cejQ\nIezYsQPl5eW4e/eueu6Cs7OzRkJ68cUXYWtri6+++gplZWVQqVTYv38/Jk6cWOez0sbV1RWjRo3C\nrFmzUFhYiLKyMvXvhK+vLy5duoTz58/j8ePHWLx4sca+9R170qRJ+Prrr3H06FGMHz9ep5+ZDIdJ\nQEbee+89jBw5Er6+vggICMC4ceM0/nLcvHkzSktL4ePjAycnJ4wfP179192iRYvw66+/wtHREWPH\njq2zb0Nq36b6JMequb728WrvW3PZ3d0dffv2hZWVFYKCguo9/vTp0/HOO+9g8ODBeO6552Bra4tv\nvvmm3veoyd7eHgcPHsS+ffvg6uqK7t27q++yWbBgAQICAtCnTx/06dMHAQEBWLBgQaPHnTt3LkJD\nQzFixAi0bdsWAwYMUCcWd3d3xMXF4e9//zueeeYZ+Pv748KFCwCAyMhI/P7772jfvj3eeOMN2NjY\nYN++fYiPj0eHDh0we/ZsbNmyBd27d9f6WWqzZcsW2NjYoGfPnnB2dsbatWsBAN27d8d//ud/4uWX\nX0aPHj0waNCgBv+dqoSHhyMpKQnDhw/XGAZs6Gcmw1GIJ73OJjITkZGRUCqV+Pzzz00dClGzY7Ar\ngcePHyMwMBB+fn7w8fHBZ599pnW7OXPmoFu3bvD19UVKSoqhwiGZSktLw65duxAZGWnqUIiaJYMl\ngdatWyMxMRHnzp3DhQsXkJiYiGPHjmlsExcXh+vXr+PatWv47rvvMHPmTEOFQzK0cOFC9O7dG598\n8onGHTpEVM2gNQFbW1sA0uzNioqKOrcBxsTEICIiAoB0O19hYSFyc3MNGRLJyN/+9jcUFRXVexVK\nRIBB5wlUVlaib9++SE1NxcyZM+v0XsnKytK4h9nNzQ2ZmZkat+WZuu8NEZG50qXka9ArASsrK5w7\ndw6ZmZlISkrS2pekdpDaTvpCmtks+69FixaZPIbm8sXPgp8FP4uGv3Q+Tzf5zP4EHB0d8eqrr+LM\nmTMaryuVSmRkZKiXMzMzdZ7EQkRET89gSSA/P1/d6fHRo0c4ePAg/P39NbYJDQ3F5s2bAQCnTp1C\nu3btdJqhSURE+mGwmkBOTg4iIiJQWVmJyspKvPPOOxg+fDg2bNgAAIiKisLo0aMRFxcHLy8v2NnZ\nYdOmTYYKxyIEBwebOoRmg59FNX4W1fhZNF2znyymUCiaNL5FRES6nzvZNoKISMaYBIiIZIxJgIhI\nxpgEiIhkjEmAiEjGmASIiGSMSYCISMaYBIiIZIxJgIhIxpgEiIhkjEmAiEjGmASIiGSMSYCISMaY\nBIiIZIxJgIhIxpgEiIhkjEmAiEjGmASIiGSMSYCISMaYBIiIZIxJgIhIxpgEiIhkjEmAiEjGmASI\niGSMSYCISMaYBIiIZIxJgIhIxpgEiIhkzGBJICMjA0OHDsXzzz+PXr16Ye3atXW2UalUcHR0hL+/\nP/z9/bF06VJDhUNERFpYG+rANjY2WL16Nfz8/FBcXIx+/fohJCQE3t7eGtsNGTIEMTExhgqDiIga\nYLArARcXF/j5+QEA7O3t4e3tjezs7DrbCSEMFQIRETXCYFcCNaWlpSElJQWBgYEarysUCpw4cQK+\nvr5QKpVYuXIlfHx86uy/ePFi9ffBwcEIDg42cMT68dJLgK0t0Lq1qSMhIkt3964Kd++qmryfQhj4\nT/Hi4mIEBwdjwYIFCAsL01hXVFSEFi1awNbWFvHx8Zg7dy6uXr2qGaBCYZZXC48fA+3bAz/8ALRp\nY+poiEhuQkN1O3caNAmUlZVhzJgxGDVqFObNm9fo9l26dMHZs2fh5ORUHaCZJgGVCvjrX4FTp0wd\nCRHJka7nToPVBIQQiIyMhI+PT70JIDc3Vx1kcnIyhBAaCcCcJSYCZjJqRUQyZrCawPHjx/Hjjz+i\nT58+8Pf3BwAsW7YM6enpAICoqCjs3LkT69evh7W1NWxtbREdHW2ocIxOpQLmzzd1FEREDTN4TeBp\nmeNw0KNHQIcOwO3bgL29qaMhIjky+XCQnJ08CfTpwwRARM0fk4ABJCYCQ4eaOgoiosYxCRiASsWi\nMBGZB9YE9OzhQ6BjRyA3F7CzM3U0RCRXrAmYyIkTgJ8fEwARmQcmAT1jPYCIzAmTgJ6xHkBE5oQ1\nAT0qLgZcXIC8PKlxHBGRqbAmYAInTgB9+zIBEJH5YBLQI9YDiMjcMAnoEesBRGRuWBPQk6IiwNUV\nyM/nQ2SIyPRYEzCy48eBgAAmACIyL0wCesJ6ABGZIyYBPWE9gIjMEWsCevDgAaBUAnfucDiIiJoH\n1gSM6NgxoH9/JgAiMj9MAnrAegARmSsmAT1gPYCIzBVrAk/p/n3AzU2aH9CqlamjISKSsCZgJEeP\nAoGBTABEZJ6YBJ4S6wFEZM6YBJ4S6wFEZM5YE3gKBQWAh4dUD2jZ0tTREBFVY03ACI4eBV58kQmA\niMwXk8BTYD2AiMwdk8BTYD2AiMwdawJP6N49wNMTuHsXsLExdTRERJpMXhPIyMjA0KFD8fzzz6NX\nr15Yu3at1u3mzJmDbt26wdfXFykpKYYKR++SkoCBA5kAiMi8WRvqwDY2Nli9ejX8/PxQXFyMfv36\nISQkBN7e3upt4uLicP36dVy7dg2nT5/GzJkzcerUKUOFpFesBxCRJTDYlYCLiwv8/PwAAPb29vD2\n9kZ2drbGNjExMYiIiAAABAYGorCwELm5uYYKSa9YDyAiS2CwK4Ga0tLSkJKSgsDAQI3Xs7Ky4O7u\nrl52c3NDZmYmnJ2dNbZbvHix+vvg4GAEm/jsm58PpKUB/fqZNAwiIjWVSgWVStXk/QyeBIqLi/Hm\nm29izZo1sLe3r7O+duFCoVDU2aZmEmgOkpKAl14CrI2SQomIGlf7D+QlS5botJ9BbxEtKyvDuHHj\nMHnyZISFhdVZr1QqkZGRoV7OzMyEUqk0ZEh6wXoAEVkKgyUBIQQiIyPh4+ODefPmad0mNDQUmzdv\nBgCcOnUK7dq1qzMU1BwlJrIeQESWwWDzBI4dO4bBgwejT58+6iGeZcuWIT09HQAQFRUFAJg9ezYS\nEhJgZ2eHTZs2oW/fvpoBNrN5Anl5QPfuUl2Aw0FE1Fzpeu7kZLEm2rED+OEHYP9+U0dCRFQ/k08W\ns1QqFesBRGQ5mASaiPUAIrIkHA5qgtxcoGdPqR7QooWpoyEiqh+HgwxApQIGDWICICLLwSTQBKwH\nEJGlYRJoAtYDiMjSMAnoKCdHmiPg62vqSIiI9IdJQEcqFTB4MGDFT4yILAhPaTpiPYCILBGTgI5Y\nDyAiS8QkoIOsLOlZwr17mzoSIiL9YhLQgUoFDBnCegARWR6e1nTAegARWSomAR2wHkBElopJoBEZ\nGcD9+8Dzz5s6EiIi/eNjURrRWD3g5k3p4TK2tkYNi4hIL5gEGtFYPWDCBODSJaB1a6OFRESkN2wl\n3YjnngP27dM+HFRRAXTqBJw8KW1HRNRc6HrubPBKIC8vDzt27EBSUhLS0tKgUCjg4eGBwYMHY/z4\n8ejYsaPeAm6Obt0CiosBHx/t60+eBFxcmACIyHzVmwQiIyORmpqKUaNGYcaMGXB1dYUQAjk5OUhO\nTsZbb70FLy8v/POf/zRmvEalUkl3BSkU2tfv2QO8/roxIyIi0q96h4MuXLiAPn36NLizLts8LVMO\nB02bBrzwAjBzZt11QgBeXsD//A/g52f82IiIGvLUTxar7+Senp6OFStWNLiNpWhofsDFi0BlJVtL\nE5F502meQF5eHr799lsEBQUhODgYt2/fNnRcJpeWBpSUSM8U1mbPHiAsrP6hIiIic1BvTeDBgwfY\ntWsXtm3bhuvXryMsLAw3b95EVlaWMeMzmaqrgPpO8rt3A2vWGDUkIiK9qzcJODs7IyQkBEuWLMGL\nL74IANi1a5fRAjO1qqKwNjdvSp1FX3rJmBEREelfvcNBX3zxBXJzczFr1ix8+eWXSE1NNWZcJiWE\ndCVQ3ySxvXuBsWOBFi2MGxcRkb7VmwTmzZuH06dPY8eOHaioqEBYWBhycnKwfPlyXL161ZgxGt3N\nm0B5OdCtm/b1u3fz1lAisgxNmjF88eJFbNu2Ddu3bzfalYEpbhHduBH45Rfgp5/qrrtzR7o1NDeX\nrSKIqPl66ltEa3vw4AGUSiU+/vhjJCcnN7r99OnT4ezsjN71PI5LpVLB0dER/v7+8Pf3x9KlS3UN\nxeAaqgfs2weMGMEEQESWodEGchs2bMCiRYvQqlUrWP3ZSlOhUODGjRsN7jdt2jR88MEHmDJlSr3b\nDBkyBDExMU0M2bCq6gGLFmlfv3s3EB5u3JiIiAyl0SSwYsUK/Pbbb3j22WebdOBBgwYhLS2twW2a\nY++6qlGurl3rrisuBo4cAX780bgxEREZSqNJ4LnnnkObNm30/sYKhQInTpyAr68vlEolVq5cCZ96\nOrUtXrxY/X1wcDCCDfiYr6q7grTND0hIAAYMABwdDfb2RERPRKVSQaVSNXm/RgvDv/76K6ZOnYoB\nAwagZcuW0k4KBdauXdvowdPS0jB27FhcvHixzrqioiK0aNECtra2iI+Px9y5c7XedWTswvDbbwPD\nhgGRkdrXDRoEzJhhtHCIiJ6IrufORpNAQEAABg8ejN69e8PKygpCCCgUCkRERDR68IaSQG1dunTB\n2bNn4eTkpBmgEZOAEIBSCRw7Vrc9dGmp1Db6t9+kZwgQETVnenmeAABUVFRg1apVegmqptzcXHTs\n2BEKhQLJyckQQtRJAMZ27Zr0qMguXequU6mAHj2YAIjIsjSaBEaNGoUNGzYgNDQUrVq1Ur/e2Ak7\nPDwcR44cQX5+Ptzd3bFkyRKUlZUBAKKiorBz506sX78e1tbWsLW1RXR09FP+KE+voXoAJ4gRkSVq\ndDjI09MTilpnRV1uEdUXYw4HhYdLcwCmTdN8vbIScHOTrga6dzdKKERET0VvNQFTM1YSEAJwdQVO\nnQI8PTXXnTolFYovXTJ4GEREevHUM4Z1udUoMTGxSUE1Z1euSLOAaycAgENBRGS56q0J7N+/H598\n8glefvllBAQEwNXVFZWVlbh9+zbOnDmDQ4cOYejQoRhaX6tNM1Nf11AhpCSwdavxYyIiMrQGh4OK\nioqwd+9eHD9+HLdu3QIAeHh4ICgoCK+99hrs7e0NH6CRhoMmTABGjwZq3/n6++/AK68At27xKWJE\nZD5YE2gCIaQ5AMnJgIeH5rply4DbtwEd5sYRETUbeusiOn/+fBQUFKiXCwoKsGDBgqeLrpm5fBmw\ns6ubAABpKCgszPgxEREZQ6NJIC4uDu3bt1cvt2/fHrGxsQYNytjqqwdkZAA3bgCDBxs/JiIiY2g0\nCVRWVuLx48fq5UePHqG0tNSgQRlbfc8P2LsXGDNGmkVMRGSJGj29vf322xg+fDimT58OIQQ2bdrU\n4DMCzE1lpZQEtHXG2L0b+OADo4dERGQ0OhWG4+PjcejQISgUCoSEhGDkyJHGiA2A4QvDFy9KcwCu\nX9d8/e5dqYlcTg5ga2uwtyciMgi9NZADpP5Bo0aNeuqgmiOVSns9IDZWainNBEBElqzeJGBvb1+n\nZ1AVhUKBBw8eGCwoY0pMBMaNq/s6ZwkTkRzIep5AZSXQoQNw4YL0HIEqDx9KfYRu3gRM3N2aiOiJ\n6G2egCW7eBF45hnNBAAABw4AAQFMAERk+WSdBOqrB3AoiIjkQtZJIDGx7vyA8nJg/37gtddMEhIR\nkVHJNglUVgJJSXWTQFKSdGuou7tJwiIiMirZJoHz54GOHaUCcE0cCiIiOZFtQwRt9QAhgD17gJ9/\nNklIRERGJ9srAW31gLNnpclh3t4mCYmIyOhkmQQqKoCjR+smgaqhID48hojkQpZJ4Nw5qRbg7Kz5\n+p49fHYAEcmLLJOAtnrA1atAQQHwwgsmCYmIyCRkmQS01QOqrgKsZPmJEJFcye6UV14OHDsGDBmi\n+TofI0lEciS7JJCSAri5SXMEqmRnA1euaH+6GBGRJZNdEtBWD4iJAUaPBlq2NElIREQmI7skoK0e\nwKEgIpIrWT1PoLxcah2dmgo8+6z0WmEh0LmzNCRkb6+XtyEiMjmTP09g+vTpcHZ2Ru/evevdZs6c\nOejWrRt8fX2RkpJiqFDUzp4FPDyqEwAAxMVJRWImACKSI4MlgWnTpiEhIaHe9XFxcbh+/TquXbuG\n7777DjNnzjRUKGra6gFsGEdEcmawBnKDBg1CWlpavetjYmIQEREBAAgMDERhYSFyc3PhXHsaL4DF\nixervw8ODkbwE97Gk5gIREVVLz96JD1F7B//eKLDERE1GyqVCiqVqsn7mayLaFZWFtxrNO13c3ND\nZmZmo0ngSZWVASdOAFu3Vr92+DDg5yc9Z5iIyJzV/gN5yZIlOu1n0ruDahctFAbs3HbmjPSwmJrP\nDeZQEBHJncmuBJRKJTIyMtTLmZmZUNZ+4rse1a4HVFQA+/YBCxc2vu+dO1JbiZAQg4VHRGQSJksC\noaGhWLduHSZOnIhTp06hXbt2WoeC9CUxEfiP/6hePn4cUCoBT8/G912+HPjv/9a8q4iIyBIYLAmE\nh4fjyJEjyM/Ph7u7O5YsWYKysjIAQFRUFEaPHo24uDh4eXnBzs4OmzZtMlQoKC0FTp4Etm+vfk3X\noaCSEmDbNqnfkJ+fwUIkItIrXUfXZTFZ7Phx4IMPgF9/lZaFkOoDMTFAA9MYAAAbNwI7dgAN3O1K\nRNTs6HrulMUzhmvXA86fl1pG9+rV8H4VFcBXXwEbNhg0PCIik5FF76Da/YJ0fYzk3r1Au3Z1204T\nEVkKi08CJSXA6dPAoEHVr+nyGEkhgC+/BP76Vz5zmIgsl8UngeRkoEcP6S96ALhxA8jNBQYMaHg/\nlQp48AB47TWDh0hEZDIWnwRq1wN27wZCQ4EWLRre78svgU8+4eMmiciyWfwprnY9QJehoJQU4NIl\n4O23DRoaEZHJWfQtoo8fSxO8srOBtm2lYaAePaT/tmpV/34TJwL9+wMff/yEQRMRmRhvEYVUEPbx\nkRIAILWJeOWVhhNAaipw6BDw/ffGiZGIyJQsejhIWz2gsaGglSuBGTMABweDhkZE1CxY9HBQcLB0\ni+crr0h3+ri5AZmZ1VcGteXmAt7ewP/9H9Cx45PHTERkaiZ/vKSpPX4stY9+6SVpOSEBCAqqPwEA\nwNq1QHg4EwARyYfF1gROnpT6AlUN6zQ2FPTggdQeIjnZOPERETUHFnsloFJV3xpaUiJdCYSG1r/9\nd98BI0ZIjeWIiOTCYpNAYmJ1UTgxUbpLyMVF+7YlJcDq1dLkMCIiObHIJPDwodQ2euBAabmxZwf8\n+CPQpw+fF0BE8mORNYGTJwFfX8DeXmoHvXev9FAYbdgumojkzCKvBGrWA06fBjp0ALy8tG/LdtFE\nJGcWmQRq1gMaGgpiu2gikjuLSwJ//AGcOyfVA4RoOAmwXTQRyZ3FJYETJwB/f8DWVuoEWl5ef8GX\n7aKJSO4s7vRXs3V01QQxbUM9bBdNRGSBSaBm07g9e+ofClq+HPjww4Y7ihIRWTqLaiBXXCxNCLtz\nB8jLAwICgJwcwLrWjbCpqUBgIHDzJruFEpFlkmUDuePHgX79gDZtpKuAsWPrJgCA7aKJiKpY1GSx\nmvWAPXuk4Z7acnOB7duldtFERHJnUVcCVfWA/HypbURISN1t2C6aiKiaxdQEiooAV1cpAURHA/v3\nAzt3am7z4IHUJTQ5md1Ciciyya4mcOyY9HD41q3rf3YA20UTEWkyaBJISEhAz5490a1bNyxfvrzO\nepVKBUdHR/j7+8Pf3x9Lly594veqqgf88Yf0/auvaq5nu2gioroMVhiuqKjA7NmzcejQISiVSvTv\n3x+hoaHw9vbW2G7IkCGIiYl56vdTqaS7fn7+GXjxRaB9e831bBdNRFSXwa4EkpOT4eXlBU9PT9jY\n2GDixInYu3dvne30UZK4fx+4fFm691/bUFBVu+hPP33qtyIisigGuxLIysqCu7u7etnNzQ2nT5/W\n2EahUODEiRPw9fWFUqnEypUr4ePjU+dYixcvVn8fHByM4Kr7QP907BjwwgtSD6DYWKknUE1790pX\nBmwXTUQXgP+BAAAMkklEQVSWSqVSQaVSNXk/gyUBhQ69mfv27YuMjAzY2toiPj4eYWFhuHr1ap3t\naiYBbarqAUeOAN27A0pl9bqqdtGffcZ20URkuWr/gbxkyRKd9jPYcJBSqURGRoZ6OSMjA25ubhrb\nODg4wNbWFgAwatQolJWV4d69e01+r6r5AdqGgtgumoiofgZLAgEBAbh27RrS0tJQWlqK7du3IzQ0\nVGOb3NxcdU0gOTkZQgg4OTk16X0KC4ErV6R2EdoaxrFdNBFR/Qw2HGRtbY1169Zh5MiRqKioQGRk\nJLy9vbHhz4f5RkVFYefOnVi/fj2sra1ha2uL6OjoJr/P0aPS3UAXLwJt2wI9elSvY7toIqKGmf2M\n4Y8+Ap55RuogqlAAy5ZVr5s4UZpA9vHHRgiUiKgZkc2M4ap6QO2hoNRU4NAh4P33TRYaEVGzZ9ZJ\n4N494Pp1wN5e6h3Ur1/1OraLJiJqnFm3kj56FBgwQJobEBZWXfxlu2giIt2Y9ZVA1fyA2kNBbBdN\nRKQbs04CKhXQq5c0JDR4sPTagwfAhg0sBhMR6cJsk8Ddu8CNG9Jzgl99FbCxkV5nu2giIt2ZbU0g\nKQl46SVg3z5g1izptap20bGxpo2NiMhcmG0SSEyUuoauXi3VBAD9toueN0+6+8jT8+mPRUTUXJlt\nElCpgDfekOYI2NlVt4v+c0LyEyspAT74AEhIkO44sjbbT4iIqHFmeYq7cwe4dQs4f766YZw+2kVn\nZQHjxkldSC9d4hwDIjJfixbptp1ZFoaTkoCBA4FffgHGjq1uF/3pp0/eLvroUemZBGFh0gPqmQCI\nSA7M8kogMRFwcZFmCD/zjLT8pO2ihQDWrQOWLgU2bwZGjtR/vEREzZVZJgGVCujSpXoo6EnbRT96\nBERFARcuACdP8rZSIpIfs+simpcnPT2sRQupVfTdu9KQUGoq0KqV7sdNS5MKy97ewPffA38+24aI\nyCJYbBfRI0cAHx/pSqBzZ2D5cuDDD5uWAA4dkp5BMGWKdFspEwARyZXZDQclJkpXAWFh1e2iv/9e\nt32FkLqLrloFREdLfYeIiOTM7IaDfHyAggLp5L9unVQYXrq08eMUFwORkVKriV27AHd3AwZNRGRi\nug4HmdWVwO3bQGYm4Owsnfx1bRd9/brUZbR/f+lW0NatDR8rEZE5MKuawJEjgKurdEL/5hvd2kXH\nxkpzCmbNAjZuZAIgIqrJrK4EquYDjBghPT84Obn+bSsrgf/6L6mNxJ49UiIgIiJNZpUEDh4EysqA\nX39tuF30/fvSnT/5+cD//q909UBERHWZzXBQdjaQkyPdFbRmjTQ5TJvLl6X2D25u0pUDEwARUf3M\nJgkcOQK0aSP19KmvXfSuXdITxj77DPj2W6BlS+PHSURkTsxmOCguTmrzEBsrPT2spooKYOFC4Kef\ngPh4ICDANDESEZkbs5kn4OwstXhu2VLq81PVLfTePWDSJOk5AP/+N9Chg2njJSJqDiyqbURWljRB\n7P59zXbR589L9/4//7xUNGYCICJqGrMYDoqLk275bNGiul301q3A3LnA2rXSfAEiImo6s7gS2LpV\nmuT1179KyeCjj6QawKFD8koAKpXK1CE0G/wsqvGzqMbPoukMmgQSEhLQs2dPdOvWDcuXL9e6zZw5\nc9CtWzf4+voiJSVF6zanT0vPCggJkb5+/126/9/X15DRNz/8Ba/Gz6IaP4tq/CyazmBJoKKiArNn\nz0ZCQgJ+//13bNu2DZcvX9bYJi4uDtevX8e1a9fw3XffYebMmVqP9egRMGECEBQkzfyNjQWcnAwV\nORGRfBgsCSQnJ8PLywuenp6wsbHBxIkTsXfvXo1tYmJiEBERAQAIDAxEYWEhcnNztR5v1y5g9Wqp\nFUSLFoaKmohIZoSB7NixQ7z77rvq5S1btojZs2drbDNmzBhx/Phx9fLw4cPFmTNnNLYBwC9+8Ytf\n/HqCL10Y7O4gRdV9nI0Qte5jrb1f7fVERKQ/BhsOUiqVyMjIUC9nZGTAzc2twW0yMzOhVCoNFRIR\nEdVisCQQEBCAa9euIS0tDaWlpdi+fTtCQ0M1tgkNDcXmzZsBAKdOnUK7du3g7OxsqJCIiKgWgw0H\nWVtbY926dRg5ciQqKioQGRkJb29vbNiwAQAQFRWF0aNHIy4uDl5eXrCzs8OmTZsMFQ4REWnRrHsH\nJSQkYN68eaioqMC7776LTz/91NQhmcT06dMRGxuLjh074uLFi6YOx6QyMjIwZcoU5OXlQaFQ4P33\n38ecOXNMHZZJPH78GEOGDEFJSQlKS0vx2muv4YsvvjB1WCZVUVGBgIAAuLm5Yd++faYOx2Q8PT3R\ntm1btGjRAjY2Nkhu4AlczTYJVFRUoEePHjh06BCUSiX69++Pbdu2wdvb29ShGd3Ro0dhb2+PKVOm\nyD4J3L59G7dv34afnx+Ki4vRr18/7NmzR5a/FwDw8OFD2Nraory8HEFBQVi5ciWCgoJMHZbJrFq1\nCmfPnkVRURFiYmJMHY7JdOnSBWfPnoWTDhOqmm3bCF3mGcjFoEGD0L59e1OH0Sy4uLjA78+HSdjb\n28Pb2xvZ2dkmjsp0bG1tAQClpaWoqKjQ6X96S5WZmYm4uDi8++67vKsQut9Z2WyTQFZWFtzd3dXL\nbm5uyMrKMmFE1NykpaUhJSUFgYGBpg7FZCorK+Hn5wdnZ2cMHToUPj4+pg7JZD788EOsWLECVlbN\n9rRmNAqFAi+//DICAgLw/fffN7hts/20dJ1nQPJUXFyMN998E2vWrIG9vb2pwzEZKysrnDt3DpmZ\nmUhKSpJt75z9+/ejY8eO8Pf351UAgOPHjyMlJQXx8fH49ttvcfTo0Xq3bbZJQJd5BiRPZWVlGDdu\nHCZPnoywsDBTh9MsODo64tVXX8WZM2dMHYpJnDhxAjExMejSpQvCw8Pxyy+/YMqUKaYOy2Rc/3y4\neocOHfD66683WBhutklAl3kGJD9CCERGRsLHxwfz5s0zdTgmlZ+fj8LCQgDAo0ePcPDgQfj7+5s4\nKtNYtmwZMjIycPPmTURHR2PYsGHqOUhy8/DhQxQVFQEA/vjjDxw4cAC9e/eud/tmmwRqzjPw8fHB\nhAkTZHsHSHh4OAYOHIirV6/C3d1d1vMpjh8/jh9//BGJiYnw9/eHv78/EhISTB2WSeTk5GDYsGHw\n8/NDYGAgxo4di+HDh5s6rGZBzsPJubm5GDRokPr3YsyYMRgxYkS92zfbW0SJiMjwmu2VABERGR6T\nABGRjDEJEBHJGJMAEZGMMQmQrA0bNgwHDhzQeO3rr7/GrFmzmnysdevW4V//+hc2b96MSZMmaazL\nz89Hx44dUVpairfeegs3b958qriJ9IVJgGQtPDwc0dHRGq9t3769zkm8MUIIbNy4UT2B7eDBg3j0\n6JF6/c6dOxEaGoqWLVvivffew+rVq/USP9HTYhIgWRs3bhxiY2NRXl4OQOpHlJ2djaCgICxfvhx9\n+vSBn58fPvvsMwBAamoqRo0ahYCAAAwePBhXrlwBIM1f6NmzJ6ytrdG2bVsMGTJEo5VxdHQ0wsPD\nAQDBwcGIi4sz8k9KpB2TAMmak5MTXnjhBfVJOTo6GhMmTEB8fDxiYmKQnJyMc+fOqZ9l8f777+Ob\nb77BmTNnsGLFCvWw0bFjx9C/f3/1cWteYWRnZ+PatWsYNmwYAMDGxgZKpRKXL1825o9KpBWTAMle\nzRP29u3bER4ejsOHD2P69Olo3bo1AKBdu3YoLi7GyZMnMX78ePj7+2PGjBm4ffs2ACA9PR0uLi7q\nY44ePRrHjx9HUVER/v3vf+PNN9/UmMXaqVMnpKWlGe+HJKoHkwDJXmhoKA4fPoyUlBQ8fPhQ3X+n\n9mT6yspKtGvXDikpKeqvS5cuqdfX3L5NmzZ45ZVXsGvXLnViqUkIwZbH1Czwt5Bkz97eHkOHDsW0\nadPUBeGQkBBs2rRJXdwtKChA27Zt0aVLF+zcuROAdCK/cOECAMDDw0N9VVAlPDwcq1atQl5eHl58\n8UWNdTk5OfDw8DD0j0bUKCYBIkgn7IsXL6r/Yh85ciRCQ0MREBAAf39//P3vfwcA/PTTT9i4cSP8\n/PzQq1cv9SMMg4KC6rRxfvnll5GTk4MJEyZovF5WVobMzEz07NnTCD8ZUcPYQI5ID4QQ6Nu3L06f\nPo2WLVs2uO2BAwcQGxuLNWvWGCk6ovrxSoBIDxQKBd577z389NNPjW77z3/+Ex9++KERoiJqHK8E\niIhkjFcCREQyxiRARCRjTAJERDLGJEBEJGNMAkREMsYkQEQkY/8PuzhceEoO66YAAAAASUVORK5C\nYII=\n"
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 4.4, Page Number: 125<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"V_CE_sat=0.2; # voltage in volt",
"V_BE=0.7; # voltage in volt",
"V_BB=3; # voltage in volt",
"V_CC=10; # voltage in volt",
"B_DC=50; # voltage in volt",
"R_B=10*10**3; # resistance in ohm",
"R_C=1*10**3; # resistance in ohm",
"",
"#calculation",
"I_C_sat=(V_CC-V_CE_sat)/R_C; # saturation current",
"I_B=(V_BB-V_BE)/R_B; # base current",
"I_C=B_DC*I_B; # current in ampere",
"",
"# result",
"if I_C>I_C_sat:",
" print \"transistor in saturation\"",
"else:",
" print \"transistor not in saturation\""
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"transistor in saturation"
]
}
],
"prompt_number": 5
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 4.5, Page Number: 127<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#Variable declaration",
"P_D_max=250*10**-3; #max power rating of transistor in watts",
"V_CE=6; #voltage in volt",
"",
"#Calculation",
"I_Cu=P_D_max/V_CE; #Current (Amp)",
"I_C=I_Cu*1000;",
"",
"#Result",
"print \"collector current that can be handled by the transistor = %.1f mA\" %I_C",
"print \"\\nRemember that this is not necessarily the maximum IC. The transistor\"",
"print \"can handle more collectore current if Vce is reduced as long as PDmax\"",
"print \"is not exceeded.\""
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"collector current that can be handled by the transistor = 41.7 mA",
"",
"Remember that this is not necessarily the maximum IC. The transistor",
"can handle more collectore current if Vce is reduced as long as PDmax",
"is not exceeded."
]
}
],
"prompt_number": 6
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 4.6, Page Number: 127<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#Variable declaration",
"P_D_max=800*10**-3; #max power rating of transistor in watts",
"V_BE=0.7; #voltage in volt",
"V_CE_max=15; #voltage in volt",
"I_C_max=100*10**-3; #Current (Amp)",
"V_BB=5; #voltage in volt",
"B_DC=100; #voltage in volt",
"R_B=22*10**3; # resistance in ohm",
"R_C=10**3; # resistance in ohm",
"",
"#Calculation",
"I_B=(V_BB-V_BE)/R_B; # base current",
"I_C=B_DC*I_B; #collector current ",
"V_R_C=I_C*R_C; #voltage drop across R_C",
"V_CC_max=V_CE_max+V_R_C; #Vcc max in volt",
"P_D=I_C*V_CE_max; #max power rating",
"",
"#Result",
"if P_D<P_D_max:",
" print \"V_CC = %.2f volt\" %V_CC_max",
" print \"V_CE_max will be exceeded first because entire supply voltage V_CC will be dropped across the transistor\"",
" "
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"V_CC = 34.55 volt",
"V_CE_max will be exceeded first because entire supply voltage V_CC will be dropped across the transistor"
]
}
],
"prompt_number": 7
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 4.7, Page Number: 128<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#Variable declaration",
"df=5*10**-3; #derating factor in watts per degree celsius",
"T1=70; #temperature 1",
"T2=25; #temperature 2",
"P_D_max=1; #in watts",
"",
"#Calculation",
"del_P_D=df*(T1-T2); #change due to temperature",
"P_D=P_D_max-del_P_D; # power dissipation",
"",
"#Result",
"print \"Power dissipated max at a temperature of 70 degree celsius = %.3f watts\" %P_D"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power dissipated max at a temperature of 70 degree celsius = 0.775 watts"
]
}
],
"prompt_number": 8
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 4.8, Page Number: 130<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#Variable declaration",
"R_C=1*10**3; #resistance in ohm",
"r_e=50; #resistance in ohm",
"V_b=100*10**-3; #voltage in volt",
"",
"#Calculation",
"A_v=R_C/r_e; #voltage gain",
"V_out=A_v*V_b; #voltage in volt",
"",
"#Result",
"print \"voltage gain = %d \" %A_v",
"print \"AC output voltage = %d volt\" %V_out"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"voltage gain = 20 ",
"AC output voltage = 2 volt"
]
}
],
"prompt_number": 9
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 4.9, Page Number: 132 <h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#Variable declaration",
"V_CC=10.0; #voltage in volt",
"B_DC=200.0; #voltage in volt",
"R_C=1.0*10**3; #resistance in ohm",
"V_IN=0.0; #voltage in volt",
"",
"#Calculation",
"V_CE=V_CC; #equal voltage",
"print \"when V_IN=0, transistor acts as open switch(cut-off) and collector emitter voltage = %.2f volt\" %V_CE",
"#now when V_CE_sat is neglected",
"I_C_sat=V_CC/R_C; #saturation current",
"I_B_min=I_C_sat/B_DC; #minimum base current",
"print \"\\nminimum value of base current to saturate transistor = %.5f ampere\" %I_B_min",
"V_IN=5; #voltage in volt",
"V_BE=0.7; #voltage in volt",
"V_R_B=V_IN-V_BE; #voltage across base resiatance",
"R_B_max=V_R_B/I_B_min;",
"",
"",
"#Result",
"kw=round (R_B_max)",
"print \"\\nmaximum value of base resistance when input voltage is 5V = %d ohm\" %kw"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"when V_IN=0, transistor acts as open switch(cut-off) and collector emitter voltage = 10.00 volt",
"",
"minimum value of base current to saturate transistor = 0.00005 ampere",
"",
"maximum value of base resistance when input voltage is 5V = 86000 ohm"
]
}
],
"prompt_number": 10
}
]
}
]
}
|