1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 10 - Negative Feedback Amplifiers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PageNumber 467 example 1"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"reverse transmission = 0.10\n",
"gain with feedback = 10.00\n"
]
}
],
"source": [
"from __future__ import division\n",
"av=1000#\n",
"chvoga=0.001##change in voltage gain\n",
"beta1=1/((chvoga)/(100/av))-1#\n",
"beta1=beta1/av#\n",
"fegain=(av)/(1+(av*(beta1)))#\n",
"print \"reverse transmission = %0.2f\"%((beta1))\n",
"print \"gain with feedback = %0.2f\"%((fegain))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PageNumber 467 example 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"output voltage = 2.19\n",
"input voltage = 0.25 volt\n"
]
}
],
"source": [
"voltag=36##volt\n",
"w=0.07##harmonic distortion\n",
"inpvol=0.028##volt\n",
"beta1=0.012#\n",
"a=voltag/inpvol#\n",
"fegain=a/(1+beta1*a)##correction in book\n",
"volta1=fegain*inpvol#\n",
"print \"output voltage = %0.2f\"%((volta1))\n",
"#decrease of gain 9\n",
"inpvol=9*inpvol#\n",
"print \"input voltage = %0.2f\"%((inpvol)),\"volt\"#"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PageNumber 468 example 3"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"required input = 1.00 volt\n",
"harmonic distortion = 0.10\n"
]
}
],
"source": [
"from __future__ import division\n",
"volgain=2000##voltage gain\n",
"outpower=20##watts\n",
"inpsig=10*10**-3##volts\n",
"fedbac=40##decibel\n",
"fedgai=volgain/100#\n",
"outvol=volgain*inpsig##output voltage\n",
"inpvol=outvol/fedgai##required input\n",
"#10 second harmonic distortion\n",
"distor=(10/100)#\n",
"print \"required input = %0.2f\"%((inpvol)),\"volt\"#\n",
"print \"harmonic distortion = %0.2f\"%((distor))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PageNumber 469 example 5"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"feedback factor = 0.019\n",
"over gain = 0.005\n"
]
}
],
"source": [
"from __future__ import division\n",
"fedgai=60##decibel\n",
"outimp=10*10**3##ohm\n",
"outim1=500##ohm modified impedance\n",
"fedgai=1000#\n",
"fedbac=((outimp/outim1)-(1))/fedgai#\n",
"#10 change in gain\n",
"overga=1/((1+(fedgai*fedbac))/0.1)##over gain\n",
"print \"feedback factor = %0.3f\"%((fedbac))\n",
"print \"over gain = %0.3f\"%((overga))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PageNumber 470 example 6"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"current gain = -11.60\n",
"voltage gain = -46.40\n",
"transconductance = -0.01 ampere per volt\n",
"transresistance = -46403.71 ohm\n",
"input resistance = 1042.65 ohm\n",
"output resistance = 3636.36 ohm\n"
]
}
],
"source": [
"colres=4*10**3##ohm\n",
"r=4*10**3##ohm\n",
"basres=20*10**3##ohm\n",
"r1=1*10**3##ohm\n",
"hie=1.1*10**3#\n",
"hfe=50#\n",
"hoe=(40*10**3)#\n",
"ri=basres*hie/(basres+hie)#\n",
"curgai=((r1/(r1+ri)))*((basres/(basres+hie)))*((-hfe*colres)/(colres+r))#\n",
"volgai=curgai*r/r1#\n",
"tranco=volgai/r#\n",
"tranre=r1*volgai#\n",
"outres=hoe*colres/(hoe+colres)#\n",
"print \"current gain = %0.2f\"%((curgai))\n",
"print \"voltage gain = %0.2f\"%((volgai))\n",
"print \"transconductance = %0.2f\"%((tranco)),\"ampere per volt\"#\n",
"print \"transresistance = %0.2f\"%((tranre)),\"ohm\"#\n",
"print \"input resistance = %0.2f\"%((ri)),\"ohm\"#\n",
"print \"output resistance = %0.2f\"%((outres)),\"ohm\"#"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|