summaryrefslogtreecommitdiff
path: root/Electronic_Devices_and_Circuits_by_D._C._Kulshreshtha/chapter05.ipynb
blob: a9d55805c61c90d7e9235af7d919e0eff67088e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
{
 "metadata": {
  "name": "",
  "signature": "sha256:c38375c3ed3aba849cd6bba227790fa8eedb466f2a80c8f732771b0fc6e2b503"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "chapter05:Field Effect Transistors (FETs)"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E1 - Pg 161"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate saturation voltage and saturation current\n",
      "#given\n",
      "Vp=-4.#V          #pinch off voltage\n",
      "Idss=12.*10.**-3.;#A      #drain to source current with gate shorted\n",
      "Vgs=-2.;#V             #gate to source voltage\n",
      "Vds=Vgs-Vp;\n",
      "Id=Idss*(Vds/Vp)**2.;\n",
      "print '%s %.f %s' %(\"Saturation Voltage is =\",Vds,\"V\\n\");\n",
      "print '%s %.f %s' %(\"Saturation current is =\",Id*10**3,\"mA\");\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Saturation Voltage is = 2 V\n",
        "\n",
        "Saturation current is = 3 mA\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E2 - Pg 162"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Find the value of drain current\n",
      "#given\n",
      "Vgso=-5.;#V          #gate to source cut off voltage\n",
      "Idss=20.*10.**-3.;#A     #drain to source current with gate shorted\n",
      "\n",
      "#At vgs = -2 V\n",
      "vgs=-2.;#V input voltage\n",
      "Id=Idss*(1.-(vgs/Vgso))**2.;          #Schockleys equation\n",
      "print '%s %.1f %s' %(\"Drain current is (At vgs = -2 V) =\",Id*10**3,\"mA\\n\");\n",
      "\n",
      "#At vgs = -4 V\n",
      "vgs=-4.;#V        input voltage\n",
      "Id=Idss*(1.-(vgs/Vgso))**2.;          #Schockleys equation\n",
      "print '%s %.1f %s' %(\"Drain current is (At vgs = -4 V) =\",Id*10**3,\"mA\\n\");\n",
      "\n",
      "#At vgs = -8 V\n",
      "print '%s' %(\"Drain current is 0 A (At vgs = -8 V) because gate is biased beyond cut off \");\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Drain current is (At vgs = -2 V) = 7.2 mA\n",
        "\n",
        "Drain current is (At vgs = -4 V) = 0.8 mA\n",
        "\n",
        "Drain current is 0 A (At vgs = -8 V) because gate is biased beyond cut off \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E3 - Pg 163"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate Vgs and Vds saturation\n",
      "#given\n",
      "import math\n",
      "Vp=5.#V          #pinch off voltage\n",
      "Idss=-15.*10.**-3.;#A      #drain to source current with gate shorted\n",
      "Id=-3.*10.**-3.;#A         #saturation current\n",
      "Vgs=Vp*(1.-math.sqrt(Id/Idss));\n",
      "Vds=Vgs-Vp;\n",
      "print '%s %.3f %s' %(\"The gate to source voltage (Vgs) is =\",Vgs,\"V\\n\");\n",
      "print '%s %.3f %s' %(\"The saturation voltage is Vds(sat) =\",Vds,\"V\");\n",
      "\n",
      "print '\\nThe value of Vgs = 2.115V and Vds= -2.885V in book because of the calculation error'\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The gate to source voltage (Vgs) is = 2.764 V\n",
        "\n",
        "The saturation voltage is Vds(sat) = -2.236 V\n",
        "\n",
        "The value of Vgs = 2.115V and Vds= -2.885V in book because of the calculation error\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E4 - Pg 167"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate drain current Id for N channel\n",
      "#given\n",
      "Vp=5.#V          #pinch off voltage\n",
      "Idss=18.*10.**-3.;#A     #drain to source current with gate shorted\n",
      "\n",
      "#For Vgs= - 3 V\n",
      "Vgs=-3.;#V\n",
      "Id=Idss*(1.-(Vgs/(-Vp)))**2.;\n",
      "print '%s %.2f %s' %(\"The drain current Id(For Vgs= -3V) =\",Id*10**3,\"mA\\n\");\n",
      "\n",
      "#For Vgs= 2.5 V\n",
      "Vgs=2.5;#V\n",
      "Id=Idss*(1.-(Vgs/(-Vp)))**2.;\n",
      "print '%s %.1f %s' %(\"The drain current Id(For Vgs= 2.5V) =\",Id*10**3,\"mA\");\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The drain current Id(For Vgs= -3V) = 2.88 mA\n",
        "\n",
        "The drain current Id(For Vgs= 2.5V) = 40.5 mA\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E5 - Pg 167"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate drain current Id for P channel\n",
      "#given\n",
      "Vp=-5.#V          #pinch off voltage\n",
      "Idss=18.*10.**-3.;#A     #drain to source current with gate shorted\n",
      "\n",
      "#For Vgs= -3V\n",
      "Vgs=-3.;#V\n",
      "Id=Idss*(1.-(Vgs/(-Vp)))**2.;\n",
      "print '%s %.2f %s' %(\"The drain current Id (For Vgs= -3V) =\",Id*10**3,\"mA\\n\");\n",
      "\n",
      "#For Vgs= 2.5V\n",
      "Vgs=2.5;#V\n",
      "Id=Idss*(1.-(Vgs/(-Vp)))**2.;\n",
      "print '%s %.1f %s' %(\"The drain current Id (For Vgs= 2.5V) =\",Id*10**3,\"mA\");\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The drain current Id (For Vgs= -3V) = 46.08 mA\n",
        "\n",
        "The drain current Id (For Vgs= 2.5V) = 4.5 mA\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E6 - Pg 172"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Find the value of drain current\n",
      "#given\n",
      "Vt=2.;#V      #threshold voltage\n",
      "K=0.25*10.**-3.;# A/V**2      #conductivity parameter\n",
      "Vgs=3.;#V #gate supply\n",
      "Vds=2.;#V #saturation voltage\n",
      "Vdsm=Vgs-Vt;        #minimum voltage required to pinch off\n",
      "\n",
      "# Vds > Vdsm therefore the device is in saturation region\n",
      "\n",
      "Id=K*(Vgs-Vt)**2.;\n",
      "print '%s %.2f %s' %(\"The drain current is =\",Id*1000,\"mA\");\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The drain current is = 0.25 mA\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E7 - Pg 172"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Find the value of Id\n",
      "#given\n",
      "Vt=1.5;#V      #threshold voltage\n",
      "Id=2.*10.**-3.;#A\n",
      "Vgs=3.;#V #gate supply\n",
      "Vds=5.;#V #saturation voltage\n",
      "Vdsm=Vgs-Vt;        #minimum voltage required to pinch off\n",
      "\n",
      "# Vds > Vdsm therefore the device is in saturation region\n",
      "\n",
      "# Calculating K\n",
      "K=Id/((Vgs-Vt)**2.);       # A/V**2      #conductivity parameter\n",
      "\n",
      "#Calculating Id for Vgs= 5 V and Vds= 6 V\n",
      "Vgs=5;#V #gate supply\n",
      "Vds=6;#V #saturation voltage\n",
      "Id=K*((Vgs-Vt)**2);\n",
      "print '%s %.2f %s' %(\"The drain current is =\",Id*1000,\"mA\");\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The drain current is = 10.89 mA\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E8 - Pg 174"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate the dynamic drain resistance\n",
      "#given\n",
      "gm=200.*10.**-6.;#S transconductance\n",
      "u=80.;#amplification factor\n",
      "rd=u/gm;\n",
      "print '%s %.f %s' %(\"The dynamic drain resistance is =\",rd/1000,\"k ohm\");\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The dynamic drain resistance is = 400 k ohm\n"
       ]
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}