1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
|
{
"metadata": {
"name": "",
"signature": "sha256:996be6d9ddaa0bf73287e9f8387b49ed0c7806d0e7dbe4ba43b1c30f0c65dc07"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"chapter03:Semiconductor Diodes"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 60"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#find the value of threshold voltage\n",
"#given\n",
"t1=25.;#degrees C#initial temperature\n",
"t2=100.;#degrees C#final temperature\n",
"V=2.*10.**-3.;#V per celsius degree#decrease in barrier potential per degree\n",
"V0=0.7#V#Potential at normal temperature\n",
"Vd=(t2-t1)*V;#decrease in barrier potential\n",
"Vt=V0-Vd;#threshold volatge at 100degree C\n",
"print '%s %.2f %s' %(\"Threshold volatge at 100 degrees C =\",Vt,'V');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Threshold volatge at 100 degrees C = 0.55 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - Pg 62"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#detrenmine dc resistance of silicon diode\n",
"#given\n",
"#At Id = 2 mA\n",
"Id=2.*10.**-3.;#Ampere#diode current\n",
"Vd=0.5;#V#voltage(from given curve)\n",
"Rf=(Vd/Id);\n",
"print '%s %.f %s' %(\"The dc resistance is =\",Rf,\"ohm\\n\");\n",
"\n",
"#At Id = 20 mA\n",
"Id=20.*10.**-3.;#Ampere#diode current\n",
"Vd=0.75;#V#voltage(from given curve)\n",
"Rf=(Vd/Id);\n",
"print '%s %.1f %s' %(\"The dc resistance is =\",Rf,\"ohm\\n\");\n",
"\n",
"#At Vd = - 10 V \n",
"Id=-2.*10.**-6.;#Ampere#diode current(from given curve)\n",
"Vd=-10.;#V#voltage\n",
"Rf=(Vd/Id);\n",
"print '%s %.f %s' %(\"The dc resistance is =\",Rf/10**6,\"M ohm\\n\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dc resistance is = 250 ohm\n",
"\n",
"The dc resistance is = 37.5 ohm\n",
"\n",
"The dc resistance is = 5 M ohm\n",
"\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E3 - Pg 63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine dc & ac resistance of silicon diode\n",
"#given\n",
"Id=20.*10.**-3.;#A#diode current\n",
"Vd=0.75;#V# as given in the V-I graph\n",
"Rf=Vd/Id;\n",
"print '%s %.1f %s' %(\"The dc resistance of diode is =\",Rf,\"ohm\\n\");\n",
"\n",
"#From Graph the values of dynamic voltage and current are\n",
"#which is equal to MN and NL repectively (in graph)\n",
"del_Vd=(0.8-0.68);#V\n",
"del_Id=(40-0)*10.**-3.;#A\n",
"rf=del_Vd/del_Id;\n",
"print '%s %.f %s' %(\"The ac resistance of the diode is =\",rf,\"ohm\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dc resistance of diode is = 37.5 ohm\n",
"\n",
"The ac resistance of the diode is = 3 ohm\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E4 - Pg 65"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine ac resistance of silicon diode\n",
"#given\n",
"#At Id =10mA\n",
"Id=10.;#mA\n",
"rf=25./Id;\n",
"print '%s %.1f %s' %(\"The ac resistance of the diode is(At Id= 10mA) =\",rf,\"ohm\\n\")\n",
"\n",
"#At Id =20mA\n",
"Id=20.;#mA\n",
"rf=25./Id;\n",
"print '%s %.2f %s' %(\"The ac resistance of the diode is(At Id= 20mA) =\",rf,\"ohm\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ac resistance of the diode is(At Id= 10mA) = 2.5 ohm\n",
"\n",
"The ac resistance of the diode is(At Id= 20mA) = 1.25 ohm\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E5 - Pg 67"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Find current through diode\n",
"#given\n",
"Vt=0.3;#V#Threshold voltage\n",
"rf=25.;#ohm# average resistance\n",
"\n",
"#assuming it to be ideal\n",
"#from fig 3.19\n",
"Vaa=10.;#V#supply\n",
"R1=45.;#ohm\n",
"R2=5.;#ohm\n",
"Vab=Vaa*R2/(R1+R2);\n",
"#Vab>Vt therefore diode is forward bias and no current flow through R2\n",
"Idi=Vaa/R1; #for ideal\n",
"print '%s %.f %s' %(\"The diode current (for ideal) is =\",Idi*1000,\"mA\\n\");\n",
"\n",
"#assuming it to be real\n",
"#Thevenins equivalent circuit parameters of fig 3.19\n",
"Vth=Vaa*R2/(R1+R2);\n",
"Rth=R1*R2/(R1+R2);\n",
"Idr=(Vth-Vt)/(Rth+rf); #for real\n",
"print '%s %.1f %s' %(\"The diode current (for real) is =\",Idr*1000,\"mA\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The diode current (for ideal) is = 222 mA\n",
"\n",
"The diode current (for real) is = 23.7 mA\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E6 - Pg 68"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Find current through resistance in given figure\n",
"#From fig\n",
"Vaa=20.;#V#supply\n",
"Vt=0.7;#V#threshold voltage of diode\n",
"rf=5.;#ohm #forward resistance\n",
"R=90.;#ohm#given resistor\n",
"\n",
"#Diode D1 and D4 are forward bias and D2 and D3 are reverse biased\n",
"\n",
"Vnet=Vaa-Vt-Vt;\n",
"Rt=R+rf+rf;\n",
"I=Vnet/Rt;\n",
"print '%s %.f %s' %(\"Current through 90 ohm resistor is =\",I*1000,\"mA\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Current through 90 ohm resistor is = 186 mA\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E7 - Pg 68"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Find current drawn by the battery\n",
"#From fig\n",
"Vaa=10.;#V#supply\n",
"R1=100.;#ohm\n",
"R2=100.;#ohm\n",
"\n",
"#Forward Bias\n",
"Id=Vaa/R1;\n",
"print '%s %.1f %s' %(\"Current drawn from battery (forward bias) =\",Id,\"A\\n\");\n",
"\n",
"#Reverse Bias\n",
"Rnet=R1+R2;\n",
"Id=Vaa/Rnet;\n",
"print '%s %.2f %s' %(\"Current drawn from battery (reverse bias) =\",Id,\"A\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Current drawn from battery (forward bias) = 0.1 A\n",
"\n",
"Current drawn from battery (reverse bias) = 0.05 A\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E8 - Pg 79"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine dc current through load and rectification efficiency and peak inverse voltage\n",
"#given\n",
"import math\n",
"TR=31./2.;#Turn ratio of the transformer\n",
"rf=20.;#ohm#Dynamic forward resistance\n",
"Rl=1000.;#ohm#Load resistance\n",
"Vt=0.66;#V#Threshold voltage of diode\n",
"V=220.;#V#input voltage of transformer\n",
"Vp=math.sqrt(2.)*220.#V#peak value of primary voltage\n",
"Vm=(1./TR)*Vp;\n",
"Im=(Vm-Vt)/(rf+Rl);\n",
"Idc=Im/math.pi;\n",
"n=40.6/(1.+rf/Rl);\n",
"print '%s %.f %s' %(\"The dc current through load is =\",Idc*1000,\"mA\\n\");\n",
"print '%s %.1f %s' %(\"The rectification efficiency is =\",n,\"percent\\n\");\n",
"print '%s %.2f %s' %(\"Peak inverse voltage =Vm = \",Vm,\"V\\n\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dc current through load is = 6 mA\n",
"\n",
"The rectification efficiency is = 39.8 percent\n",
"\n",
"Peak inverse voltage =Vm = 20.07 V\n",
"\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E9 - Pg 79"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine dc voltage across load and peak inverse voltage across each diode\n",
"#given\n",
"import math\n",
"TR=12./1.##Turn ratio of the transformer\n",
"V=220.##V#input voltage of transformer\n",
"Vp=math.sqrt(2.)*220.#V#peak value of primary voltage\n",
"Vm=(1./TR)*Vp#\n",
"Vdc=(2.*Vm)/math.pi#\n",
"print '%s %.1f %s' %(\"The dc voltage across load =\",Vdc,\"V\\n\")#\n",
"print '%s %.1f %s' %(\"Peak inverse voltage (for bridge rectifier) =\",Vm,\"V\\n\")#\n",
"print '%s %.1f %s' %(\"Peak inverse voltage (for centre tap rectifier) =\",2*Vm,\"V\\n\")#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dc voltage across load = 16.5 V\n",
"\n",
"Peak inverse voltage (for bridge rectifier) = 25.9 V\n",
"\n",
"Peak inverse voltage (for centre tap rectifier) = 51.9 V\n",
"\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E10 - Pg 80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#find dc power supplied to load and efficiency and PIV rating of the diode\n",
"#given\n",
"import math\n",
"rf=2.;#ohm#Dynamic forward resistance\n",
"Rs=5.;#ohm#resistaqnce of secondary\n",
"Rl=25.;#ohm#Load resistance\n",
"Idc=0.1;#A#dc current to a load\n",
"Pdc=Idc**2.*Rl; #dc power\n",
"n=(81.2*Rl)/(Rl+rf+Rs); #efficiency\n",
"Im=(math.pi*Idc)/2.; #peak value current\n",
"Vm=Im*(Rl+rf+Rs); #peak voltage\n",
"Vlm=Vm-Im*(rf+Rs); #peak voltage across load\n",
"PIV=Vm+Vlm;\n",
"print '%s %.2f %s' %(\"The dc power supplied to the load is =\",Pdc,'W\\n');\n",
"print '%s %.2f %s' %(\"Efficiency =\",n,'percent\\n');\n",
"print '%s %.3f %s' %(\"The peak inverse voltage is =\",PIV,'V');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dc power supplied to the load is = 0.25 W\n",
"\n",
"Efficiency = 63.44 percent\n",
"\n",
"The peak inverse voltage is = 8.954 V\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E11 - Pg 87"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate output voltage and current through load and voltage across series resistor and current and power dissipated in zener diode\n",
"#given\n",
"Vi=110.;#V #input voltage\n",
"Rl=6.*10.**3.;# ohm #load resistance\n",
"Rs=2.*10.**3.;#ohm #series resistance\n",
"Vz=60.;#V #Zener voltage\n",
"V=Vi*Rl/(Rs+Rl);\n",
"\n",
"#This V>Vz therefore Zener diode is ON\n",
"\n",
"Vo=Vz; #output voltage\n",
"Il=Vo/Rl; #Current through load resistance\n",
"Vs=Vi-Vo; #Voltage drop across the series resistor\n",
"Is=Vs/Rs #current through the series resistor\n",
"Iz=Is-Il #/By applying kirchhoffs law\n",
"Pz=Vz*Iz #Power dissipated accross zener diode\n",
"\n",
"print '%s %.f %s' %(\"The output voltage is =\",Vo,\"V\\n\");\n",
"print '%s %.f %s' %(\"The current through load resistance is =\",Il*1000,\"mA\\n\");\n",
"print '%s %.f %s' %(\"Voltage across series resistor is =\",Vs,\"V\\n\")\n",
"print '%s %.f %s' %(\"Current in zener diode is =\",Iz*1000,\"mA\\n\")\n",
"print '%s %.f %s' %(\"Power dissipated by zener diode =\",Pz*1000,'mW');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The output voltage is = 60 V\n",
"\n",
"The current through load resistance is = 10 mA\n",
"\n",
"Voltage across series resistor is = 50 V\n",
"\n",
"Current in zener diode is = 15 mA\n",
"\n",
"Power dissipated by zener diode = 900 mW\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E12 - Pg 88"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Calculate max and min values of zener diode current\n",
"#given\n",
"Vimin=80.;#V #minimum input voltage\n",
"Vimax=120.;#V #maximum input voltage\n",
"Rl=10.*10.**3.;# ohm #load resistance\n",
"Rs=5.*10.**3.;#ohm #series resistance\n",
"Vz=50.;#V #Zener voltage\n",
"V=Vimin*Rl/(Rs+Rl);\n",
"\n",
"#This V>Vz therefore Zener diode is ON\n",
"\n",
"#For minimum value of zener diode\n",
"\n",
"Vo=Vz; #output voltage\n",
"Vs=Vimin-Vo; #Voltage drop across the series resistor\n",
"Is=Vs/Rs #current through the series resistor\n",
"Il=Vo/Rl; #Current through load resistance\n",
"Izmin=Is-Il;\n",
"print '%s %.f %s' %(\"Minimum values of zener diode current is =\",Izmin*1000,\"mA\\n\");\n",
"\n",
"#For maximum value of zener diode\n",
"\n",
"Vo=Vz; #output voltage\n",
"Vs=Vimax-Vo; #Voltage drop across the series resistor\n",
"Is=Vs/Rs #current through the series resistor\n",
"Il=Vo/Rl; #Current through load resistance\n",
"Izmax=Is-Il;\n",
"print '%s %.f %s' %(\"Maximum values of zener diode current is =\",Izmax*1000,\"mA\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Minimum values of zener diode current is = 1 mA\n",
"\n",
"Maximum values of zener diode current is = 9 mA\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E13 - Pg 88"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine value of the series resistor and wattage rating\n",
"#given\n",
"Vi=12.##V #input voltage\n",
"Vz=7.2##V #Zener voltage\n",
"Izmin=10.*10.**-3.##A #min current through zener diode\n",
"Ilmax=100*10.**-3.##A #max current through load\n",
"Ilmin=12.*10.**-3.##A #min current through load\n",
"Vs=Vi-Vz# #Voltage drop across the series resistor\n",
"Is=Izmin+Ilmax# #Current through the series resistor\n",
"Rs=Vs/Is#\n",
"print '%s %.1f %s' %(\"The series resistor so that 10mA current flow through zener diode is =\",Rs,\"ohm\\n\")#\n",
"Izmax=Is-Ilmin#max zener through zener diode\n",
"Pmax=Izmax*Vz#\n",
"print '%s %.1f %s' %(\"The maximum wattage rating is =\",Pmax*1000,\"mW\")#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The series resistor so that 10mA current flow through zener diode is = 43.6 ohm\n",
"\n",
"The maximum wattage rating is = 705.6 mW\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E14 - Pg 90"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Find the capacitance of a varactor diode\n",
"#given\n",
"import math\n",
"C=5.;#pf#capcitance of varactor diode at V=4V\n",
"V=4.;#V\n",
"K=C*math.sqrt(4.);\n",
"#When bias voltage is increased upto 6 V\n",
"Vn=6.;#V#new bias voltage\n",
"Cn=K/(math.sqrt(Vn));\n",
"print '%s %.3f %s' %(\"Capacitance (At 6 V ) =\",Cn,\"pf\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Capacitance (At 6 V ) = 4.082 pf\n"
]
}
],
"prompt_number": 14
}
],
"metadata": {}
}
]
}
|