1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
{
"metadata": {
"name": "",
"signature": "sha256:42445a9cad2a842fdbeaf4fef86ad51dfbe0d5e8d585b4595a7c5777bd6d8bc1"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter04:Bipolar Junction Transistors (BJTs)"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 120"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine the collector and base current\n",
"#given\n",
"a=0.98;#dc alpha\n",
"Ie=5.*10.**-3.;#A#emitter current\n",
"Ico=2.*10.**-6.;#A#collector reverse leakage current\n",
"Ic=a*Ie+Ico;\n",
"Ib=Ie-Ic;\n",
"print '%s %.3f %s' %(\"The collector current is =\",Ic*1000,\"mA\\n\");\n",
"print '%s %.f %s' %(\"The base current is =\",Ib*10**6,\"uA\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The collector current is = 4.902 mA\n",
"\n",
"The base current is = 98 uA\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - Pg 120"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine the base and collector current and exact and approax dc alpha \n",
"#given\n",
"Ie=8.4*10.**-3.#A#emitter current\n",
"Icbo=0.1*10.**-6.##A#reverse leakage current\n",
"Ib=0.008*Ie##A#base current\n",
"Ic=Ie-Ib#\n",
"Icinj=Ic-Icbo#\n",
"a0=Icinj/Ie#\n",
"a=Ic/Ie#\n",
"print '%s %.1f %s' %(\"Base current is =\",Ib*10**6,\"uA\\n\")#\n",
"print '%s %.4f %s' %(\"Collector current =\",Ic*1000,\"mA\\n\",)#\n",
"print '%s %.7f %s' %(\"Exact value of alphha =\",a0,\"\\n\")#\n",
"print '%s %.3f' %(\"Approax value of alpha =\",a)#\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Base current is = 67.2 uA\n",
"\n",
"Collector current = 8.3328 mA\n",
"\n",
"Exact value of alphha = 0.9919881 \n",
"\n",
"Approax value of alpha = 0.992\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E3 - Pg 121"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Determine the base current\n",
"#given\n",
"a=0.96; #dc alpha\n",
"Rc=2.*10.**3.;#ohm #resistor across collector\n",
"Vc=4.;#V #Voltage drop across the collector resistor\n",
"Ic=Vc/Rc; #Colletor current\n",
"Ie=Ic/a; #Emmiter current\n",
"Ib=Ie-Ic; #Base current\n",
"print '%s %.f %s' %(\"The base current is =\",Ib*10**6,\"uA\",)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The base current is = 83 uA\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E4 - Pg 125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine dynamic input resistance\n",
"#given\n",
"Ie=2.;#mA\n",
"Vcb=10.;#V\n",
"\n",
"#Taking points around Ie & Vcb from graph\n",
"del_Ie=(2.5-1.5)*10.**-3.;#A\n",
"\n",
"#corresponding change in Veb\n",
"del_Veb=(0.9-0.8);#V\n",
"rib=del_Veb/del_Ie;\n",
"print '%s %.f %s' %(\"The dynamic input resistance of transistor is =\",rib,\"ohm\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dynamic input resistance of transistor is = 100 ohm\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E5 - Pg 129"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#find dc current gain in common emitter configuration\n",
"#given\n",
"a=0.98;#dc current gain in common base configuration\n",
"B=a/(1.-a);\n",
"print '%s %.f' %(\"The dc current gain in common emitter configuration is=\",B);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dc current gain in common emitter configuration is= 49\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E6 - Pg 129"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate ac alpha and beta\n",
"#given\n",
"ic=0.995#mA#Emitter current change\n",
"ie=1.#mA#collector current change\n",
"a=ic/ie;\n",
"B=a/(1.-a);\n",
"print '%s %.3f %s' %(\"The ac alpha is =\",a,\"\\n\")\n",
"print '%s %.f' %(\"The common emitter ac current gain is =\",B);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ac alpha is = 0.995 \n",
"\n",
"The common emitter ac current gain is = 199\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E7 - Pg 129"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate beta and Iceo and exact and approax collector current\n",
"#given\n",
"a0=0.992;#dc current gain in common base configuration\n",
"Icbo=48.*10.**-9.;#A\n",
"Ib=30.*10.**-6.;#A#base current\n",
"B=a0/(1.-a0);\n",
"Iceo=Icbo/(1.-a0);\n",
"print '%s %.f %s' %(\"Beta=\",B,\"\\n\");\n",
"print '%s %.f %s' %(\"Iceo=\",Iceo*10**6,\"uA\\n\");\n",
"Ic=B*Ib+Iceo;\n",
"Ica=B*Ib;#approax\n",
"print '%s %.3f %s' %(\"Exact collector current =\",Ic*1000,\"mA\\n\");\n",
"print '%s %.2f %s' %(\"Approax collector current =\",Ica*1000,\"mA\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Beta= 124 \n",
"\n",
"Iceo= 6 uA\n",
"\n",
"Exact collector current = 3.726 mA\n",
"\n",
"Approax collector current = 3.72 mA\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E8 - Pg 130"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine dynamic input resistance\n",
"#given\n",
"Vbe=0.75;#V\n",
"Vce=2.;#V\n",
"\n",
"#Taking points around Vbe=0.75V from graph\n",
"del_Vbe=(0.98-0.9);#V\n",
"\n",
"#corresponding change in ib\n",
"del_ib=(68.-48.)*10.**-6.;#A\n",
"\n",
"rie=del_Vbe/del_ib;\n",
"print '%s %.f %s' %(\"The dynamic input resistance of transistor is =\",rie/1000,\"k ohm\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dynamic input resistance of transistor is = 4 k ohm\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E9 - Pg 131"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine dynamic input resistance and dc and ac current gain\n",
"#given\n",
"Ib=30.*10.**-6.;#A\n",
"Vce=10.;#V\n",
"Ic=3.6*10.**-3.;#A #from graph\n",
"\n",
"#Taking points around Vce = 10V from graph\n",
"del_Vce=(12.5-7.5);#V\n",
"\n",
"#corresponding change in ic\n",
"del_ic=(3.7-3.5)*10.**-3.;#A\n",
"\n",
"roe=del_Vce/del_ic;\n",
"print '%s %.f %s' %(\"The dynamic output resistance of transistor is =\",roe/1000,\"k ohm\\n\");\n",
"\n",
"#dc current gain\n",
"Bo=Ic/Ib;\n",
"print '%s %.f %s' %(\"The dc current gain is =\",Bo,\"\\n\");\n",
"\n",
"#ac current gain\n",
"\n",
"del_ic=(4.7-2.5)*10.**-3.; #the collector current change is from 3.5mA to 4.7mA as we can see from graph when we change ib from 40mA to 20mA\n",
"del_ib=(40.-20.)*10.**-6.;\n",
"B=del_ic/del_ib;\n",
"print '%s %.f %s' %(\"The ac current gain is =\",B,\"\\n\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dynamic output resistance of transistor is = 25 k ohm\n",
"\n",
"The dc current gain is = 120 \n",
"\n",
"The ac current gain is = 110 \n",
"\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E10 - Pg 134"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate ac current gain in CE and CC configuration\n",
"#given\n",
"a=0.99;\n",
"B=a/(1.-a);\n",
"print '%s %.f' %(\"The ac current gain in CE configuration is =\",B);\n",
"y=1.+B;\n",
"print '%s %.f' %(\"\\nThe ac current gain in CC configuration is =\",y);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ac current gain in CE configuration is = 99\n",
"\n",
"The ac current gain in CC configuration is = 100\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|