summaryrefslogtreecommitdiff
path: root/Electronic_Devices_/Chapter6.ipynb
blob: 22b56e1789ba48714d15b6c5874a604a8d48be3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
{
 "metadata": {
  "name": "Chapter_6"
 }, 
 "nbformat": 2, 
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown", 
     "source": [
      "<h1>Chapter 6: BJT Amplifiers<h1>"
     ]
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.1, Page Number: 171<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "%pylab inline"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "", 
        "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", 
        "For more information, type 'help(pylab)'."
       ]
      }
     ], 
     "prompt_number": 1
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "# result", 
      "", 
      "print \"theoretical example\""
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "theoretical example"
       ]
      }
     ], 
     "prompt_number": 2
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.2, Page Number: 174<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "# variable declaration", 
      "I_E=2.0*10**-3;   #emittor current", 
      "", 
      "#calculation", 
      "r_e=25.0*10**-3/I_E;  #ac emitter resistance", 
      "", 
      "#result", 
      "print \"ac emitter resistance = %.2f ohms\" %r_e "
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "ac emitter resistance = 12.50 ohms"
       ]
      }
     ], 
     "prompt_number": 3
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.3, Page Number: 178<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "# variable declaration", 
      "I_E=3.8*10**-3;    #emittor current", 
      "B_ac=160.0;        #AC value", 
      "R1=22*10**3;       #resistance in ohm", 
      "R2=6.8*10**3;      #resistance in ohm", 
      "R_s=300.0;         #resistance in ohm", 
      "V_s=10.0*10**-3;   #voltage in volt", 
      "r_e=25.0*10**-3/I_E;  ", 
      "", 
      "#calculation", 
      "R_in_base=B_ac*r_e;   #base resistance", 
      "R_in_tot=(R1*R2*R_in_base)/(R_in_base*R1+R_in_base*R2+R1*R2);", 
      "V_b=(R_in_tot/(R_in_tot+R_s))*V_s;  #base voltage", 
      "", 
      "#result", 
      "print \"voltage at the base of the transistor = %.3f volts\" %V_b"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "voltage at the base of the transistor = 0.007 volts"
       ]
      }
     ], 
     "prompt_number": 4
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.4, Page Number: 180<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "import math", 
      "# variable declaration", 
      "R_E=560.0;     #resistance in ohm", 
      "f=2*10**3;     #minimum value of frequency in hertz", 
      "X_C=R_E/10.0;  #minimum value of capacitive reactance", 
      "", 
      "#calculation", 
      "C2=1.0/(2.0*math.pi*X_C*f); #capacitor ", 
      "", 
      "#result", 
      "print \"value of bypass capacitor = %.7f farads\" %C2"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "value of bypass capacitor = 0.0000014 farads"
       ]
      }
     ], 
     "prompt_number": 5
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.5, Page Number: 181<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "import math", 
      "# variable declaration", 
      "r_e=6.58;      #from ex6.3", 
      "R_C=1.0*10**3; #collector resistance", 
      "R_E=560;       #emittor resistance", 
      "", 
      "#calculation", 
      "A_v=R_C/(R_E+r_e);   #gain without bypass capacitor", 
      "A_v1=R_C/r_e;        #gain with bypass capacitor", 
      "print \"gain without bypass capacitor = %.2f\" %A_v", 
      "print \"gain in the presence of bypass capacitor = %.2f\" %A_v1"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "gain without bypass capacitor = 1.76", 
        "gain in the presence of bypass capacitor = 151.98"
       ]
      }
     ], 
     "prompt_number": 6
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.6, Page Number: 182<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "# variable declaration", 
      "R_C=10.0**3;    #resistance in ohm", 
      "R_L=5.0*10**3;  #inductor resistance", 
      "r_e=6.58;       #r_e value", 
      "", 
      "#calculation", 
      "R_c=(R_C*R_L)/(R_C+R_L);  #collector resistor", 
      "A_v=R_c/r_e;              #gain with load", 
      "", 
      "#result", 
      "print \"ac collector resistor = %.2f ohms\" %R_c", 
      "print \"gain with load = %.2f\" %A_v"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "ac collector resistor = 833.33 ohms", 
        "gain with load = 126.65"
       ]
      }
     ], 
     "prompt_number": 7
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.7, Page Number: 184<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "# variable declaration", 
      "R_C=3.3*10**3;   #resistance in ohm", 
      "R_E1=330.0;      #emitter resistance", 
      "", 
      "#calculation", 
      "A_v=R_C/R_E1;    #voltage gain", 
      "", 
      "#result", 
      "print \"approximate voltage gain as R_E2 is bypassed by C2 = %.2f\" %A_v"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "approximate voltage gain as R_E2 is bypassed by C2 = 10.00"
       ]
      }
     ], 
     "prompt_number": 8
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.8, Page Number: 184<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "import math", 
      "B_DC=150.0;", 
      "B_ac=175.0;", 
      "V_CC=10.0;", 
      "V_s=10.0*10**-3;", 
      "R_s=600.0;", 
      "R1=47.0*10**3;", 
      "R2=10.0*10**3;", 
      "R_E1=470.0;", 
      "R_E2=470.0;", 
      "R_C=4.7*10**3;", 
      "R_L=47.00*10**3;", 
      "R_IN_base=B_DC*(R_E1+R_E2);", 
      "#since R_IN_base is ten times more than R2,it can be neglected in DC voltage calculation", 
      "V_B=(R2/(R2+R1))*V_CC;", 
      "V_E=V_B-0.7;", 
      "I_E=V_E/(R_E1+R_E2);", 
      "I_C=I_E;", 
      "V_C=V_CC-I_C*R_C;", 
      "print('dc collector voltage = %.3f volts'%V_C)", 
      "r_e=25.0*10**-3/I_E;", 
      "#base resistance", 
      "R_in_base=B_ac*(r_e+R_E1);", 
      "#total input resistance", 
      "R_in_tot=(R1*R2*R_in_base)/(R1*R2+R_in_base*R1+R_in_base*R2);", 
      "attenuation=R_in_tot/(R_s+R_in_tot);", 
      "#ac collector resistance", 
      "R_c=R_C*R_L/(R_C+R_L);", 
      "#voltage gain from base to collector", 
      "A_v=R_c/R_E1;", 
      "#overall voltage gain A_V", 
      "A_V=A_v*attenuation;", 
      "#rms voltage at collector V_c", 
      "V_c=A_V*V_s;", 
      "V_out_p=math.sqrt(2)*V_c;", 
      "print('V_out peak = %d mV'%(V_out_p*1000))", 
      "", 
      "################Waveform plotting##############################", 
      "", 
      "import pylab", 
      "import numpy ", 
      "", 
      "t = arange(0.0, 4.0, 0.0005)", 
      "", 
      "", 
      "subplot(121)", 
      "plot(t, V_C+V_c*sin(2*pi*t))", 
      "ylim( (4.63,4.82) )", 
      "title('Collector Voltage')", 
      "", 
      "subplot(122)", 
      "plot(t, -V_s*sin(2*pi*t))", 
      "plot(t, V_out_p*sin(2*pi*t))", 
      "ylim( (-0.15,0.15) )", 
      "title('Source and output AC voltage')"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "dc collector voltage = 4.728 volts", 
        "V_out peak = 119 mV"
       ]
      }, 
      {
       "output_type": "pyout", 
       "prompt_number": 9, 
       "text": [
        "<matplotlib.text.Text at 0xad2caac>"
       ]
      }, 
      {
       "output_type": "display_data", 
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEICAYAAABfz4NwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8VNX5/z+TzCSZrDPZdxJ2AgipuOBXJahIUcGtKtiy\n1GrBpS4t35/W6he01g33Ulv61SqogEstm4CKGKUuIF8RFSigJJCNrJNlkklme35/HGayTWbunbud\nhPt+vXhp7tx75zPnzjzPOc95znMMRETQ0dHR0TntidBagI6Ojo4OH+gOQUdHR0cHgO4QdHR0dHRO\noTsEHR0dHR0AukPQ0dHR0TmF7hB0dHR0dADoDkEQpaWlyMvL8/9dUFCAjz76SENF8lJeXo6IiAh4\nvV6tpehwyqJFi/Dggw9qLWNI0deu8MBp5RDWrl2LKVOmICEhAdnZ2bjsssvw2Wefib6PwWCAwWCQ\npEXuH9iSJUuwcOHCfsf379+PmJgYNDc3C75XSUkJXn75Zdm0DQX+/e9/47zzzoPFYkFKSgrOP/98\n7N27V2tZqiHHdz4Qy5cvx/z58zW5X0lJCZKTk+F0Ovu9JpetEENBQQF27typ6HuE4rRxCM888wzu\nuecePPDAA6irq0NFRQVuv/12bNq0SWtpYdG3N79o0SK8++676Ojo6HX8tddew+zZs2GxWATfW4kf\n/mCmtbUVV1xxBe666y7YbDZUVVVh2bJliI6Olv29PB6P7PeUi6G0hrW8vBx79uxBenp6Pxugla0w\nGAzatzGdBjQ3N1N8fDy98847A57T2dlJd911F2VnZ1N2djbdfffd1NXVRUREH3/8MeXm5vrPLSgo\noI8++oiIiLxeLz322GM0YsQISklJoeuvv56ampr85+7atYumTp1KFouF8vLy6NVXX6W///3vZDKZ\nKCoqiuLj42nOnDlERHTw4EGaNm0aWSwWGj9+PG3atMl/n4ULF9KSJUto1qxZFBcX53//nowZM4bW\nrFnj/9vtdlN2djZt2rSJvF4v/fGPf6Rhw4ZReno6LViwgFpaWoiIqKysjAwGA7ndbrr//vspMjKS\nYmJiKD4+nn7zm98QEdGdd95JeXl5lJiYSGeeeSbt2rXL/z4dHR20YMECslqtNG7cOHriiSd6tVdV\nVRVdc801lJaWRoWFhfTCCy8IeGr88NVXX5HFYhnw9WBt2/e7Q0Q0bNgw//NbtmwZXXvttfSLX/yC\nEhMT6eWXX6bGxkZatGgRZWdnk9Vqpauuusp/7ebNm2nSpElksVjovPPOo2+//XZAXcGe2bJly+i6\n666jBQsWUEJCAo0fP5727t3rf/3rr7+m4uJiSkhIoBtuuIHmzp1LDzzwgGyff8eOHbRt2zaKiooi\nk8lE8fHxNHnyZCIimjZtGt1333109tlnU2JiIl155ZX+31Q49wvEQw89RLNnz6ZHHnmErrjiCv9x\nIbaiJ19++SVlZmaS1+v1H3v33XfpjDPOICLhduUXv/gFRUREkNlspvj4eFqxYgUREf3sZz+jzMxM\nSkpKogsvvJAOHDjgf5+Ghga64oorKDExkc466yz6wx/+QOeff77/9UOHDtEll1xCycnJNGbMGHrr\nrbdCfp7TwiFs27aNjEYjeTyeAc958MEHaerUqVRfX0/19fV03nnn0YMPPkhEwR3Cc889R1OnTqWq\nqipyOp20ePFimjdvHhERlZeXU0JCAq1fv57cbjc1NjbSN998Q0REixYt8t+fiMjpdNKIESPoscce\nI5fLRTt37qSEhAQ6fPgwETGHkJSURJ9//jkRsS9aX/70pz/RJZdc4v97+/btlJaWRm63m15++WUa\nOXIklZWVkd1up2uuuYbmz59PRN0Owdc+JSUl9PLLL/e69+uvv05NTU3k8Xjo6aefpszMTP8X+957\n76WSkhJqbm6myspKmjhxIuXl5RERkcfjoZ/85Cf0xz/+kVwuFx07doyGDx9O77//fvCHxhGtra2U\nkpJCCxcupG3btvVy+EQUtG0DGbCe359ly5aRyWSijRs3EhGRw+Ggyy67jObOnUvNzc3kcrno008/\nJSJmpNPT02nPnj3k9Xpp9erVVFBQ4H8OfQn2zJYtW0YxMTG0bds28nq99Pvf/57OPfdcIiLq6uqi\n/Px8eu6558jtdtM777xDJpOp1/dVrs+/fPly/7k+pk2bRjk5OXTgwAFqb2/3O8xw7xeIESNG0Ouv\nv05Hjhwhk8lEdXV1RCTMVgS614cffuj/+2c/+xk98cQTRBS+XfHxyiuvkN1uJ6fTSXfffXcvJ3fD\nDTfQvHnzyOFw0MGDBykvL48uuOACIiKy2+2Um5tLr776Knk8Htq3bx+lpqbSwYMHg36W08IhvP76\n65SZmRn0nBEjRtC2bdv8f7///vtUUFBARMEf3Lhx43o9xOrqajKZTOR2u+nRRx+la665JuD7LVq0\nqFeP69NPP+2ncd68ebR8+XIiYg5h4cKFQT/D8ePHyWQyUVVVFRER3XjjjXT33XcTEdFFF11Ef/3r\nX/3nHj58mEwmE3k8noAO4aWXXgr6Xlar1d87HT58OH3wwQf+11566SV/e3355ZeUn5/f69pHH32U\nfvnLXwa9P28cOnSIFi1aRLm5uWQ0GmnOnDlUW1tLRMHbVohDmDZtmv+16upqioiIoObm5n4alixZ\n0s8ojxkzhj755BNBn6HnM1u2bBnNmDHD/9qBAwfIbDYTEdEnn3xC2dnZva7tacj6IvXz+4y9j5KS\nEvr973/v//vgwYMUFRVFXq83rPv1ZdeuXRQTE0Otra1ERDRp0iR69tlniUiYrejLAw88QDfddBMR\nsc5DXFwcnThxgojCtyuBsNlsZDAYqLW1ldxuN5lMJjpy5EgvHb4Rwvr16/3Owcevf/1reuihh4J+\nltNiDiElJQUNDQ1Bs2iqq6sxbNgw/9/5+fmorq4Oee/y8nJcffXVsFqtsFqtKCoqgtFoRG1tLSor\nKzF8+HBBGqurq/tlHAwbNsyvwWAwhMxIyM/Px4UXXojXXnsNdrsdGzduxIIFCwAANTU1/T6f2+1G\nbW1twHv1nUd46qmnUFRUBIvFAqvVipaWFjQ0NATUnpub6///48ePo7q62t8+VqsVjz32GOrq6kI1\nCVeMHTsWr7zyCioqKvD999+juroad999NwDxbduXnu1VUVGB5ORkJCUl9Tvv+PHjePrpp3u1ZWVl\nJWpqagLeN9gzA4CMjAz//8fGxqKzsxNerxfV1dXIycnpda9hw4YNGN+W+vkD0fP7lJ+fD5fL1Uu7\nFFavXo1LL70UCQkJAIDrrrsOq1evBiDMVvTlxhtvxLvvvgun04l3330XZ555pl9/uHYFYPOE9913\nH0aOHImkpCQUFhbCYDCgoaEB9fX1cLvdQX93u3fv7vVdWbt2bchnclo4hKlTpyI6Ohr/+te/Bjwn\nOzsb5eXl/r9PnDiB7OzskPfOz8/H9u3bYbPZ/P86OjqQnZ2NvLw8/PjjjwGv62tws7OzUVFR0etH\nd/z48X4/zFAsXLgQr732Gv75z3+isLAQxcXFA34+o9HYyygMpG3Xrl1YsWIF3n77bTQ3N8NmsyEp\nKcmvNSsrCxUVFf7ze/5/Xl4eCgsLe7VPa2srtmzZIupz8cSYMWOwcOFCfP/99wCCt21cXFyviX6P\nx4P6+vpe9+vZ3nl5eWhqakJLS0u/983Pz8cf/vCHXm1pt9txww039Ds31DMLRlZWFqqqqnodO378\n+IDJBlI+/0D3PHHiRK//N5lMSE1NDft+PhwOB9566y3s3LkTWVlZyMrKwtNPP439+/fj22+/FWQr\n+jJu3DgMGzYM27Ztw9q1a3HjjTf6XxNjV/pqf+ONN7Bp0yZ89NFHaGlpQVlZGYhFdZCWlgaj0Tjg\n7y4/Px/Tpk3r9V1pa2vDX/7yl6Cf5bRwCElJSXj44Ydx++23Y+PGjejo6IDL5cK2bdtw7733AgDm\nzZuHRx55BA0NDWhoaMDDDz8sKH1tyZIluP/++/1f4Pr6en82ws9//nPs2LEDb7/9NtxuNxobG7F/\n/34ArHd27Ngx/33OPfdcxMbG4sknn4TL5UJpaSm2bNmCuXPnAhCe4XHttdfixIkTWL58ORYtWuQ/\nPm/ePDz77LMoLy+H3W7H/fffj7lz5yIiov9XICMjo5cja2trg9FoRGpqKpxOJx5++GG0trb6X7/+\n+uvx2GOPobm5GVVVVVi5cqX/y3322WcjISEBTz75JBwOBzweD77//vtBlbJ5+PBhPPPMM34jWVFR\ngXXr1mHq1KkAgrft6NGj0dnZia1bt8LlcuGRRx5BV1fXgO+VlZWFWbNm4bbbbkNzczNcLhc+/fRT\nAMAtt9yCv/3tb9izZw+ICO3t7Xjvvfdgt9v73SfUMwvG1KlTYTQa8cILL8DlcuHdd9/FV199NeD5\nUj5/ZmYmysvLe32/iQivv/46Dh06hI6ODvzP//wPrrvuOhgMhrDu15MNGzbAaDTi0KFD2L9/P/bv\n349Dhw7hggsuwJo1awTZikDceOONeO6557Br1y5cd911vdpGqF3p+7uz2+2Ijo5GcnIy2tvbcf/9\n9/tfi4yMxDXXXIPly5fD4XDgP//5D1577TX/7+7yyy/HkSNH8Prrr8PlcsHlcuGrr77Cf/7znwE/\ng6/xTxveeOMNmjJlCsXFxVFmZiZdccUV9MUXXxARm6S98847KSsri7Kysuiuu+7qlQ3gmyQl6p9l\n9Mwzz9CYMWMoISGBRowYQX/4wx/85+7atYvOOeccSkxMpLy8PH8W0NGjR2ny5MlksVjo6quvJiIW\nx502bRolJSXR+PHjacOGDf779J2EDsaiRYvIZDJRTU2N/5jX66WHH36Y8vLyKC0tjebPn++PU5eV\nlVFERIR/DuGLL76g0aNHk9Vqpbvuuos8Hg/ddNNNlJiYSFlZWfTkk09SYWGhvw3a29tp/vz5ZLFY\nqKioiB555BEaMWKE/72rq6tp3rx5lJmZSVarlaZOnRo0VsobVVVVdP3111NOTg7FxcVRTk4OLVmy\nhNra2ogoeNsSEb366quUlZVF6enp9NRTT/Vqu0CToE1NTbRw4ULKyMggq9VK1157rf+17du301ln\nnUUWi4WysrLo+uuv9+voSahn1vd9+34H9u7d2y/LaKDvn5TP39jYSOeffz5ZrVY688wziah7DsGX\nZTRnzhxqbGwM+349+elPf0pLly7td/ytt96irKws/+cPZisCceLECYqIiOiVsUQkzq5s3LiR8vPz\nyWKx0NNPP012u52uvPJKSkhIoIKCAlqzZg1FRETQjz/+SERE9fX1dPnll1NiYiKdffbZdO+999LF\nF1/sv9/hw4fp8ssvp7S0NEpJSaGLL76Y9u/fP+BnICIyEGmd+Koz1PjrX/+Kt956Cx9//LHWUnQG\nIdOnT8f8+fNx0003aS1lUHHvvfeirq4Or7zyStj3OC1CRjrKcvLkSXz22Wfwer3+8MrVV1+ttSyd\nQYzeTw3N4cOH8e2334KIsGfPHvzjH/+Q/LszyqRN5zTG6XRiyZIlKCsrg8Viwbx583DbbbdpLUtn\nEKOvlg9NW1sb5s2bh+rqamRkZGDp0qWYM2eOpHvqISMdHR0dHQAajxD0XoCOGmjR59G/2zpKo8T3\nWvM5BDqVVyv137Jly/R7DRFtct5L/27r9xqK91IKzR2Cjo6Ojg4f6A5BR0dHRwfAEHIIJSUl+r00\nvB+v9xoK8Nq2+r20u5dSaJplxMWGEDpDGq2+Y/p3W0dJlPp+DZkRgo6Ojo6ONHSHoKOjo6MDQHcI\nOjo6Ojqn4N4huFzA/PnAsmVaK+mNxwPcfDPw3/8N8BQqJgLuuAP4zW/407V0KfDrX7O209HR4Q/u\nHcI//gEcO8b+y1MJ/fXrgW++Af71L+BUuXou2LQJ+OQT4KOPgK1btVbTzUcfMW179wLvvKO1Gh0d\nnUBwn2V0wQXAvfcCX38N2GzAs8+qJC4Es2YBCxcC1dXAoUPA//6v1ooY110HzJzJeuGffAKsXau1\nIsaiRUBxMZCaCrz5JnMOaqBnGekMRZT6fnHtEJqbgbw8oKGBGd3rrweOHFFR4AB0dgIpKcDJk0Bt\nLXDhhUBVFaB1+RqPB7Ba2YjK6QTGjwcaG4EAm6KpChGQns5GB4mJQH4+e6bR0cq/t+4QdIYip2Xa\n6Z49wE9+wgzHxInM+Mq0z7Ykvv4aGDsWSEgARowAvF6gxxawmnHgAJCVxXrh2dlAcjIQasc8NTh2\njD3DYcOYwxo+HDi1k6iOjg5HcO0Qdu8GzjmH/X9kJDBlCnMSWtNTl8HA/n/3bm01Ab11AbouHR0d\ncXDtEPbuBc4+u/vvKVOA//s/7fT40HWJg1ddOjo6veHaIRw6BBQVdf9dVMRHCETXJQ5edeno6PSG\nW4fgdLK4/IgR3cfGjWPGRUuI2MT2mDHdx3jQBQCHDw8uXfqcq44OX3DrEI4dA3Jze2eijBnDjIvX\nq52uqiogPh5ISuo+NnIkc15dXdrpam4GOjrYZLKPvDx2vLVVO12dnSw1t7Cw+1hKChAVxbK0dHR0\n+IFbh9C3VwkwI2yxABUV2mgCAuuKimIZND/8oI0mgOkaPbp36mtEBNOqZXjmhx+AggLAZOp9nJfR\ni46OTjeCHILH40FxcTFmz57d77WGhgb89Kc/xeTJkzFhwgS8+uqr/te2b9+OsWPHYtSoUXjiiSdE\nCQtkeAGWslhWJupWssKzrrFj+x8fMUJ7XTy2l46OTn8EOYTnn38eRUVFATcOX7lyJYqLi/HNN9+g\ntLQUv/vd7+B2u+HxeHDHHXdg+/btOHjwINatW4dDIrqEZWXMaPRl2DDg+HHBt5EdXZc4eNWlo6PT\nn5AOobKyElu3bsXNN98ccGVcVlYWWk8FqVtbW5GSkgKj0Yg9e/Zg5MiRKCgogMlkwty5c7Fx40bB\nwk6cYCta+1JQAJSXC76N7Oi6xMGrLh0dnf6EdAj33HMPVqxYgYgB6h/ccsstOHDgALKzszFp0iQ8\n//zzAICqqirk5eX5z8vNzUVVVVW/65cvX+7/V1pa6j9eUcEmRfuidc9S1yUOtXWVlpb2+k7xzM6y\nnZj0t0nYepSjKoQAPq/4HJP+Ngn/PPhPraX04uuar1G8qhivf/u61lJ6cbD+IH6y6if43//jpKCZ\nBIzBXtyyZQvS09NRXFzcy1j35NFHH8XkyZNRWlqKH3/8ETNmzMB+EXUJBvrRVlQM3LNct07w7WUn\nmC4te7wDGV4edKnZXiUlJb32rn3ooYfkfxMZ8JIXv978a9ww4QYs3rIYx+48BlOkKfSFCkNEuPW9\nW3H5qMtx+9bbMWvULMSaYrWWBQD4zbbf4NIRl+Lu7Xdj9ujZSIpJCn2RCty9/W5cVHgR7t1xL64a\nexXS4tK0lhQ2QUcIn3/+OTZt2oTCwkLMmzcPO3fuxIIFC/qdc9111wEARowYgcLCQhw+fBi5ubmo\n6JEOVFFRgdzcXEGi7HaWwpmc3P81LXu8bjerp9QztdOHlrqIWGgmWE9cq5z/gXTl5gI1NaxNT0d2\nHd8Fs8mMR6Y/guyEbJSWl2otCQDrhduddjxy0SMYnz4e7//wvtaSAACHGw6jzFaGP130J/xX/n9h\n85HNWksCAJxoOYGva77GIxc9gp+O/Cn+eYivUZVYgjqERx99FBUVFSgrK8P69etx0UUXYc2aNb3O\nGTt2LHbs2AEAqK2txeHDhzF8+HBMmTIFR48eRXl5OZxOJ958803MmTNHkChfbzdQ9dD8fPa6FmsR\nqquBtLT+KZQAkJnJcv4dDvV12WxMU2Ji/9cSE9lrTU3q6+rsBFpagIyM/q9FRbEKqAGiiKcF23/c\njmvGXQODwYCrx16NTUdUqgcegu0/bMdVY69ChCGCO12zx8yGMcKIq8ZchY2Hhc9HKskHP36AmSNn\nIsYYw9rrMB/tFS6i1iH4soxWrVqFVatWAQDuv/9+7N27F5MmTcIll1yCJ598EsnJyTAajVi5ciVm\nzpyJoqIi3HDDDRg3bpyg9xloIhIAYmJYldHGRjHK5WGg8AfAcv4zMrRZbDVQuMhHVhbrjatNZSWQ\nkzNw+W2tdPHAp8c/xYX5FwIASgpK8NmJzzRWxPj0xKeYNmwaAL50fXL8k366eCgv/unx7vaaVjAN\nX1R+AS9puHJWIkHnEHoybdo0TJvGPvjixYv9x1NTU7F5c+Dh26xZszBr1izRooQauDSVQ3UDhT98\nZGczXT1X5aqBUF0TJqinCRCu63TD4XLgm5Pf4NzccwEAxZnFONJ4BHanHfFR8Zrp8ng9+KLiC6y7\nlk3SFaUVoa69DvXt9ZrGxYkIu07swguzXgAAFFgKQCCcaDmBYZZhmukCgF0nduH+C+4HAKTHpSM1\nNhWH6g9hfPp4TXWFC5crlSsr+e3xDlZd1dXq6fHBa3tpzcH6gxhhHYG4qDgAQLQxGhPSJ2BfzT5N\ndR2zHUNqbCqSzWzyLsIQgSnZU7C3Wtu9a2vsNTDAgNxENgdpMBhwds7Z+Kr6K011tXS2oL69HqNT\nRvuP8aBLClw6hJoaZiwGQqueZShdWhk4Xdfg4kD9AUxI7z1cm5A+AQfqD2ikiPFd3Xdc6vq+7vvA\nuuq011WUVoQIQ7cZnZCmfXtJgUuHUFsbeCLSh1Y93sGsSwvDy2t7ac2B+gMYn9Y7pDA+bbzmhiSQ\n4dV1DUxAXenjNXdUUhi0DoFHA6fVyEXXNbjg1ZB8X/c9JqZP7HWMW108OIR6PnVJgUuHcPIkn4Zk\nsDoqfeTCFwfrD/abdCxKK8LB+oMaKWIcrD+IorSiXsd8urTM6Amka0zqGPzY9CPcXu0WsgTSVWgt\nRH17PexOu0aqpMGdQyDi15CcPMnWGwyErqs3vOryEaoa73/+8x9MnToVMTExePrpp0VdOxBOjxPV\nbdUosBT0Op6dkI2Wrha0O9vD+ixSISKUNZdhuLV3JUJLjAUxxhjUd9Rrogtgk919dcUYY5ARn4GK\nFu1q4QfSFWGIQKG1EGW2wVnKlzuHYLezBWnxQbLvtDAkbjdbeJaaOvA5WugS40DV7uSF0pWeztaT\naLFaWUg13pSUFPz5z3/G0qVLRV87ECdaTiA7IRvGiN4Z3xGGCBRYClDWrI0hqWuvg9loRkJ0Qr/X\nCq2FOGY7poEqwO60w+60IzO+f8+i0KKdLrfXjeq26oBpr1rqkgp3DiGUEQG0MXD19ayURmTkwOek\npbFVwy6XerqEOND4eKZbzZ3ThDhQo5HtnlZXp54uH0Kq8aalpWHKlCkw9VmaLqWSb3lzOQotgReq\nDLcO16xnecx2DIVW/nSV2cpQYCkIWHp/uHW4Zg60oqUCGXEZiIqM6vealrqkInhhmlqEmj8AgNhY\ntvq1vT24IZQTIY4qMhKwWlmZiFDnqqkLYM6qoaH31p9KIsSB+nTV1weuD6Ukgarx7t69W9ZrexZu\n9BXdK7OVBTW8WvUsy5rLBnRUWvZ4y5o5bi8VdZWWlg5YYFROuHMItbXB484+fIaEJ4cAdOvi0SHU\n17Md1NRArC61CdTjlPvaQJV8y5rLUJBUEPD8QkshjjVrZOBs/ecPfAy3Dseeqj0qK2KU2YI7Kq2K\n3IXStePYDlnfT60qvoMyZASwUISahoRXA6frCo+cnJywq/FKuba8uZzfHi+nI4RgjkrXJS+D1iFo\nYeDEjFzUQtcVHmKq8fZNuZRSyTeY4R2WNAwnWk6I+yAyESwEMsyisa6B2ktDXcdsx0Lq4qH4nli4\nDBmdcUbo89Q2JKFSKH2oPXIRMucC6Lr60rMar8fjwa9+9SuMGzfOX8V38eLFOHnyJM466yy0trYi\nIiICzz//PA4ePIj4+PiA1wqhvLl8wIJsOYk5qGrVph74iZYTyE8KXMo3JyEHVW1VICJJobZwdeUl\nBS6IlRGXgSZHE1wel+qbC1W0VgzYXonRiTAYDGjtauVmEx+hcOcQTp4EZswIfZ4WPd5Jk0Kfp4Uu\noQ5UzWweMSOE775TXk8gAlXj7VnJNzMzs1doKNS1oXB73WjsaAyYQgkAqbGpaHO2odPdiRhjjKh7\nS4GIUN1WjZyEnICvx0XFIToyGrZOm7/wnVoE0xUZEYn0uHTU2GsGNM6K6koMrAvodqKDzSFwFzJq\naAiequhDbcOr6xIHr7q0pNZei9TY1H5rEHxEGCKQFZ+F6jZ1l5W3drUiwhARcA2Cj5zEHFS2Vqqo\nCnB5XLA5bEiPSx/wHC1GVT4HmhU/cOVGLUd7UuDOITQ2stz0UKhtSHRd4uBVl5ZUt1UjOyF4fq0W\nhkSQrgT1dZ20n0R6XDoiIwbOXfb1xNWkubMZ0ZHR/vLlgdBClxzoDkEgui5x8KpLSwQbXpUNiRBd\nuYm5/Ori0YHqIwTpELGVvjwaEl4NXGMjn6EZXttLS6rbqpGVEGSDCHA8QuBVlwYOtKqtiktdcsCV\nQ2hpAcxmtgF7KNTMTnG52KpoIat81TRwRPwaXqG6UlJYiQuPR3lNWlNjr0F2fGhDUtmmbqyeV8Mr\n1FGpPbchtL3U1iUHXDkEoUYEUNfANTWxkhQDbRbfk9RUdr5XhX22OzqYJrM59Lnx8czodnQor8vj\nYc7dag19rtHIHG1jo/K6tIbXWH21vVqQo1LdIdgHt6PSRwgSEeMQkpKAri6gs1NZTYDwsAwAmEzM\n+NpsymoCxLWXwaCeE21uBhITmbEXwukSNuLVkIRKoQQ47olrFMoaKBXWhxaOXQ4GrUMwGNQLG4nR\nBahn4HRdgwshBi4jLgN17eqWf61qDR0T13V1I+Q5pselo9HRCC+pECqQkUHrEAB2Lm89cUDXxasu\nrREyqZwRn4Fae61KihhCDVxDR4OqBk6IrsToRDg9TjhcDpVUCZtUNkWakBidiMaOwRULHdQOITmZ\nxeuVpqFB1yUGXnVpidPjhK3ThrTYtKDnJUUnocvTpZqBIyLU2GuCLrICtDFwoRZ/AazybEZ8Bmrb\n1XOiQhw7wEYvauqSA90hCEDXJQ5edWlJXXsd0mLTgi6yApiBS49LVy0M0tLVgujIaJhNoTMT1NTl\n8rjQ5mz0u8hvAAAgAElEQVRDSmzoL5KauogIde11yIgLXahLTV1ywZ1DEDp5C+gGTm+vwUNde13Q\nEgw9UbNnWd9ez6Wuho4GpJhTEGEIbaIy4tQLs7U52xAVGSXIgWoR/pMKdw6BR0Oi6xIHr7q0pL69\nHmlxwcNFPtQ0JHXtdYNeV3pcumqOyjfSE4IeMpIIr4ZE1yUOXnVpSX2HuJ64WqGGIaErXkVdIkdU\neshIAmINiW//YqXRdYmDV11aIqZnyWuPl1ddavbEeR25yMWgdgine49X1zV4qO+o59LA8TqHIEZX\nely6aqEssSMXfQ5BArymK/Jq4HRdgwdRhlfFEEhdh4ieOK+6VAzNiB256CGjMOnsZEXk4uOFX6OG\nISFi78GjgePV8PKqS0tEhxrU6vHy2hMXq0utkYuIEYIeMpKAz4iI2bJVDUPS0gLExAirwOpDDV0u\nF2C3C6vA6sMXq1dy728i8SO9xETA4QCcTuV0aQ2vISNRWUa86lI7+0nEiKrWXgtS8gcnM9w5BDGo\nYXjD0WWxMEeiZMVTMRVYfZjNQGSkshVP29uZpthY4dcYDOyzDOXyFbyGjMT2eOva61QxcGJ0pZhT\n0NLVArfXrbAqcc8x1hQLU6QJbc42hVXJBzcOwWZjBl4MCQks1NTVpYwmIDxdRiMLfbW0KKMJCE8X\noLwT5VWX1ojp8aaYU2Bz2ODxKr9JhJgeb1xUHCIMEbA77QqrEqcrMiIS1hgrGjoaFFYl7jkCQFps\n2qCaR+DGITQ3C6uf3xODgRkSJXuWzc2sxy8WpQ2crmvw0OXuQqe7E0nRwuJ7kRGRSIpJgq1T2SGT\nl7xo6GgQZeBSY1PR6FC+npGYnjhwSpcKdZbEjFwA9XTJBVcOgUdDEo6jAnRdYhnKDqG+g61SNoiY\nIEuNTVW8x9vc2Yw4UxyiIoVPkKWYUxQ3cF3uLrS72mGJEW4Q1GgvImIrzgWOXAAgJTZFlZGLXHDj\nEGw2fh2Crks4vOrSEjHhDx9qGF6xvXBAHcPb0NGAtFhxDjQlNkXxkUtLVwvMJjOijdGCr1FrRCUX\n3DgEXg0Jr46KV128Pkct4dXwio2HA7ousY5dDV1ywpVD4DHUIEWXkvsE82p4bTY+n6OW+EJGYlCj\nxys2Hg5wrIvTEVWKWfn2khOuHAKPBo5nXTwaXl7bS0t47VmGpcvMqa7YVDQ4Ts+Ri5xw4xCkhEB4\n7YnruoSjtC4tCafHq4bhbexoRGqsiA01oM4IIRxdahjeRkcY7WXWJ5XDItwer9XKrlWKcB3V6aor\nXIegtK5AbN++HWPHjsWoUaPwxBNPBDznzjvvxKhRozBp0iTs27fPf7ygoABnnHEGiouLcfbZZwd9\nn4aOBj4Nr6MRKWZxqy7VMrxidakRMmrsCK+9BlPaqVFrAT54NSS8Oipe2yvcOQS1HYLH48Edd9yB\nHTt2ICcnB2eddRbmzJmDcePG+c/ZunUrfvjhBxw9ehS7d+/Grbfeii+//BIA2+qytLQUyQJW4TU5\nmrg0vE2OJkxMnyjqGjUMb5OjCWNSxoi6RpX26mxCslncqks97TRMwu3xWix8Gl41dIVjeE/X9urL\nnj17MHLkSBQUFMBkMmHu3LnYuHFjr3M2bdqEhQsXAgDOOeccNDc3o7a2u2aO0BIOTQ7xhkS1nriA\nPYt7clrrCnOEMJgcwqAfIZyuBk7XJY2qqirk5eX5/87NzcXu3btDnlNVVYWMjAwYDAZccskliIyM\nxOLFi3HLLbf0e4/ly5cDAA7uPYhjCccwvXC6YH1q9cR5dFTh6FIjxBaWLnMKmhxNICJR6yr6Ulpa\nitLS0rCvFwoXDsHtZgXXEhLEX6u0IeF15MKrrsHiEIT+OAcaBfz73/9GdnY26uvrMWPGDIwdOxYX\nXHBBr3N8DuGlZ17CpRdfKkqfWoZXdKz+lOGVauCCEU5P3BJjQVtXG9xeN4wRypi1JkeT6JFLtDEa\n0cZotHa1IilGRGniPpSUlKCkpMT/90MPPRT2vYLBRciopYWVQBZTudOHkoaksxPweMRV7vShpC6i\n8A1vUhJrb6UKVoY7hxATwzR1dsqvKRA5OTmoqKjw/11RUYHc3Nyg51RWViInJwcAkJ2dDQBIS0vD\n1VdfjT179gz4XuH0LK1mK5o7mxUtcNfY0ShaV6wpFgYY0OFSrmRuOO0VYYiA1WxFk0O53OVGh/j2\nAgbXamUuHEK4xg1Q1vC2tLD7h9MRSkxk+xV4FPg9d3Sw/RnE7NHgw2QCoqNZmWq58XqBtjb22cVi\nMKg7SpgyZQqOHj2K8vJyOJ1OvPnmm5gzZ06vc+bMmYM1a9YAAL788ktYLBZkZGSgo6MDbW2spHF7\nezs++OADTJwYeHLW4XLAS17EmsT1KowRRiRGJ6K5U5kGISLYOm2wmsV7b6XDM+E4BED5UVW4ugZT\n6ikXIaNwJ0gBIC6ObazidIZnIEPpCtdRRUSwEFhra/ifTQldQLfhFbM7nRBaW9k9IyOl6crMlFdX\nIIxGI1auXImZM2fC4/HgV7/6FcaNG4dVq1YBABYvXozLLrsMW7duxciRIxEXF4dXXnkFAHDy5Elc\nc801AAC3242f//znuPTSwCEhW6cNyebksMIrPgMnNkwhhNauVpiNZlGF7frqyk/Kl12X2+uG3WkP\nK7yipEMgorBCWcDgmlgW5BA8Hg+mTJmC3NxcbN68uddrTz31FN544w0A7Mdx6NAhNDQ0wGKxoKCg\nAImJiYiMjITJZBpwWB1uPBzo3bNMF7f2JyRSdAHs2nBDKMGQS1efCIlk5HBUam6SM2vWLMyaNavX\nscWLF/f6e+XKlf2uGz58OL755htB7xFOWMaHkj3xcHu7gLIT3jaHDZYYCyIM4oMXSupyuB0wGAww\nm8yir02JVT5BQC4EOYTnn38eRUVF/mFyT5YuXYqlS5cCALZs2YLnnnsOllNWQWiutlw9XrkdgpSR\nC6BcCESu9pIbqc5P7YllNZBieJXsWYYzQepDSV3hpJz6ULy9whgdAINrhBDSDVdWVmLr1q24+eab\nQ+Zdr127FvPmzet1TEiuNq8GTqoupRZb6boGD1IdglI9y3AnSAHlDa+k9lJoRCVlpJdqHjyTyiFH\nCPfccw9WrFiB1tbWoOd1dHTg/fffx4svvug/JjRX+/PP2QRsaWnv1Cqh8OoQlNTFY0+ch/ZSK19b\nKFJ64inmFNR31MusiCEpZBSbolghOUkhNnMKTraflFkRQ2p77a/dL7MiZQjqELZs2YL09HQUFxeH\n/JFt3rwZ559/vj9cBACfffYZsrKyQuZq/+EPbAP4MHwBAGVDIFobuEDwqosHh6BWvrZQpMbqlUqj\nDHeCFGC6jjYdlVkRQ0poJiU2BQcbDsqsiCEllKXkc5SboCGjzz//HJs2bUJhYSHmzZuHnTt3YsGC\nBQHPXb9+fb9wUVZWFoDQudo8GJJA6D1xcfDaXlrS1NmE5JjwHEKyOVmxfZWlOKpkczJsDl2XUJTU\nJTdBHcKjjz6KiooKlJWVYf369bjooov8edk9aWlpwaeffoorr7zSf0xMrjavhoRnw8ujLl5HLloi\nJQSi5EKrps7we+LWGOV0hVPp1IeSuqSMXJLNyUNjhNAXXy71qlWr/PnaALBhwwbMnDkTZnN3SlZt\nbS0uuOACTJ48Geeccw6uuOKKgXO1JRoSXidJT7eeOK/tpSVSe5ZKhox41MVte0mYhFd6BbWcCF6Y\nNm3aNEybNg1A/1zthQsX+qtC+igsLBScqy2HIamsDP/6geC1x8urLt0h9IdXA8erLimGV+n2EluS\n28eQHSEoBa+GRO+Ji4PX9tISKVlGSsaepUySKj23waMuKZPwidGJ6HB1wOVxyaxKfrhwCHIsaFJi\nhSuvK2951SXXCuqhBK89cSm6rGYrbA4bvOSVWZW0UJZvFbHD5ZBTEgBp7RVhiIAlxqJYXSo54cIh\n8Nzj5XVuQ4oD5XXOZSguTJMSAkmISlCsZyllktQYYUSsKRZtXf0rF0hFii5AuYllKSMXYPDMI2ju\nEHwlps3iS4T4UcIhEPEbq+dVl1SHkJTE7qFUaW616XR3wuVxIc4UF9b1BoOB9cZlDoN4yQubI7xK\npz6UGr1I6YkDyumS4tiBwTOPoLlD8PV2pey1oYSB6+joLhUdLkro8npZVdFwSkz7SExk9/DKPOKX\nOnKJiWGVUh3yj/g1weYIv9KpDyXmEVq7WhEXFSdpIxklDJzT44TD7UBidPhfbiXmEYhIFkel1PyG\nnHDhEKT0KgFlDK8cuuLjmWNxu+XRBLD9BuLiAKOEwuVGI9v0x26XT5fLxQy51JLaQ2liWWqYAVDG\n8EqZIPWhhIGzOWywxlglO1C526vd1Q5jhBExxpiw76GPEAQih+E1m1lvV87dtqSGZQC2J4JvhzK5\nkKucttyGt6WFfVapuyoONYcgpVcJKBMTl0WXAjFxqWEZQBldcrSX7hAEIodD8O2JIKfhlUMXIL+B\n03UNHng1JLyOXLjWJXFEpeQqajnR3CHw2uOVGg/3cboYXl7bS0vk6PEqEZqRS5cSoSzJumIUaC85\ndOlzCMLg2cDpuoQjR4gNGFoOgecRAo+Gd0i3lx4yEoacBk7ORU1yGji5dcnVE5dTF6/PUUt4DTXI\nMamsVKyeR11SVnX70B2CQPSQkTh4HSHw2l5awmvPsqmTT128hrJ4fY5KoLlD4NnAyaFL7tW3uq7B\ng1yGRInQjBxppzyOEJRYtyHXSG8w7IkwZBwCrwaOV0elzyEoD689XrkmSU+XEQKvupRAc4fAqyHR\ndYmDV0elJbzm+8u1PkKJnvhQXrdh67SBOK/LorlD4DX2rOsSB6+6tITX2DOvk6SNHdJ1JcUkwe60\nw+P1yKRKnkn4qMgoxBhj0OaUvyCgnEgogCAPvPYsdV3i4FWXlsgVe27ubAYRBSzp4HIB//oX8P77\nQHU1kJYGXHIJcP31rDbUQLqsMdK8d6wpFh7ywOFy+MtO98TtBjZvBrZuZZtXpaQAF10EzJ3LyqYo\npSvCEIGkmCQ0dzYHdC4eD7BtG9N24gTrxJSUADfeOHDZlSZHk6RCgD58o6pAtZq8XuCDD4BNm4Cy\nMrbq/8ILgV/8QlrdMrFoPkLgNb2T1zRKXdfgodPdifgoacWdTJEmmI3mgD3L0lJg/HjgL38BpkwB\nfvMb4IILgHXrgFGjmNHri5e8aOlskWzgDAbDgBPen38OnHEGsGIFMGkScMcdwPTpwIYNwMiRwNtv\nB76nrdMmeYQADDx62bsXOPNM4KGHgKIipuvSS4Ht24ERI4DXXw9cadfWaZPs2IPp+vZb4Nxzgfvu\nY+1z++3AZZcBn3zCdL30kooVgElDAFBkJFFXl/R7ffEF0dlnS7+PD4uFqKFB+n2+/ZaoqEj6fXzk\n5hKVl0u/z7FjRMOGSb+Pj7FjiQ4ckH6f2lqilBTp9/Gh1VccAKWvSJflXvnP5lOZrcz/t9dL9Mwz\nRFlZRJs2Bb7m44+JCgqIHniAyOPpPm5z2CjpsSRZdI1bOY6+q/2u17G//Y0oI4PonXeYzr58/jnR\nqFFEv/0tkdvdfbzL3UXGh43kDXSRSM76+1n0ZcWXvY6tXk2Ulkb0+uuBde3dy36nS5YQuVzdx71e\nL0X9MYocLodkXdNfnU47ftzR69jbbxOlphK99FJgXfv3E02eTLRgAVFnZ/dxpb7Xmo8QoqOBqCjp\n95Ezy8hXYjopSfq9lMh+kiNWz6suX8iI87k3QUidP+h5n549y+XLgZdfBr74Apg9O/A1JSXA7t3A\njh3Arbd2t6dc4Q+frp4TyytWAE8/Dfz738C11wYudDh1KtP19dfAwoUshAPIU+m0p66e7fXii8Cy\nZWxE9fOfB9Z15pmsPcvLgRtu6K5Q3OHqQKQhUlKl04F0vfoqcM89LFT0q18F1nXGGaw9W1uBq64C\nurokywiK5g5BjjCD7z5yGTg5Skz7kFOX283KaUstMQ2wuKTdLt+eCHKFjKKiWCehvV36vUKxfft2\njB07FqNGjcITTzwR8Jw777wTo0aNwqRJk7Bv3z5R18rpEHyG99VXgddeA3buBIYNC35dejozNt9+\nywwPkTwT3T11+Qzc228DL7zAdI0cGfw6q5XNLVRXA0uWdOuS1VGdCmW99x7wyCPARx+xMFEwEhNZ\nWMvhYM7K65W/vXy6du4E7r2XPZ/i4uDXxcWx9o2L6+2slEBzh9DjNyYJOXfbksu4AewhdnUBTqf0\ne/lKTEfI8NQiIphjaW2Vfq/OTvbjGWgSUyxyOdFg3wWPx4M77rgD27dvx8GDB7Fu3TocOnSo1zlb\nt27FDz/8gKNHj+Lvf/87br31VsHXApAl7gx0G16fEXnvPWbshZCQwCZRd+4EnntOGYfwxRfAbbex\nOYvcXGHXms1sAnX/fuBPf2Jxerl17dsHLFoEvPsuMHy4sGujo4F//pNNhN9/v7y6fCnEBw+yyfU3\n3wTGjRN2rdEIrF3LnNXdd8siJ/D7KHdrYQj9YociJoYZOYdj4CwGocg10Q10l+Zubpb+WeXUBXRP\n4Eq9p8+ByjDa76VLqHEZiGAbAO3ZswcjR45EQUEBAGDu3LnYuHEjxvX4hW7atAkLFy4EAJxzzjlo\nbm7GyZMnUVZWFvJaQL4RgjXGigNlTXjxJnFGxIfFwoz11KnA/FR5DdzRyibc/2tg9Wpg8mRx18fH\nAxs3AuecA9iz5XNUVrMV5bVNeOI24K9/ZRO2YjCbmRM55xwABTI60JhknGhoxOXzWXitpETc9VFR\nwFtvseeoFJo7BDnxGV6pDkHOEQLQHa+X6hCU0iUVnnUNRFVVFfLy8vx/5+bmYvfu3SHPqaqqQnV1\ndchrAWD/G4ex/JvlAICSkhKUiLUAp4j2JuOFl5vw7AqWrRMOw4axnu+M+5tw2S/lCc2YKRmr1tjw\nxwdZVkw4ZGUxp3Dhb5pwwSJ5DG+sIRl/e+s4/t+dwM9+Ft49UlKYEz33l02YNF+e9oqPTMZbm4/i\ntgUsJCWG0tJSlJaWAgBmzAACDEhlYUg5BJ8hyc6Wdh+5Jkh9yBUC0XWJI9g9hE5ekoQY5MmWO3Dn\nnT9HsgQ719EBbFyfjHE/aRBtRPoydSpw2bVNeH9DMk5eCmRmhn+vri7g7TXJyBt9ALfdJk1XcTFw\nw6ImrH/fioqZQA9fKxq3G1j3cjKSs7/B0qXSdI0bB/zqjib8dUsyfpgZem4kGB4PsObvyTCn2rB8\nufjr+3YoXnjhofDFBEHzOQQ5kdOQyB2a0XUJRw2HkJOTg4qKCv/fFRUVyO0To+p7TmVlJXJzcwVd\nCwA/P+PnuOaa8OePvF5g/nwgJzkZ434iz6rgvNFNOHdSMq68koVXw4EIuPlmwBKTjDGT5dGVM9KG\n//pJMmbPZkkd4eq64w7A5E7GqDOaZAlhZhXacMGZybjiCmnrY/7f/wM6m5JRWCSPLqUYcg5BjkVN\nShg4XZdw5NQ1EFOmTMHRo0dRXl4Op9OJN998E3PmzOl1zpw5c7BmzRoAwJdffgmLxYKMjAxB1wLA\nE0+wz/LrX4tPdiBimUGNjcBdi+Wrz2Nz2HD97GSMHNmdSSOWBx4AjhwBHvidFbZOeXQ1OZpw2fRk\nnH02MG9edzqqGB5/HPjyS+DR/7HC1iWTrs4mTD83GZddxlJpw3Huzz/PEgFeeNKKZpl0KcWQcwg8\n9nhPh1g9r7oGwmg0YuXKlZg5cyaKiopwww03YNy4cVi1ahVWrVoFALjsssswfPhwjBw5EosXL8aL\nL74Y9Nq+REYCb7zB0j7/+Edx2p96imUGbdgAZCTIVzeIZRlZ8fLLLO3zvvvEOasXX2QpkFu2AFkW\neXWlxCbjL39hWWt33SVO1+rVwN//ztJZ81Ll1WU1W7FiBZsEX7xYnBN9+202gfz++0BhJv8VT4fk\nHIJUmptD53iLgVdHxbOuqirp9wn12WbNmoVZs2b1OrZ48eJef69cuVLwtYGIi2O9w+nTmYH7n/8J\nnY315JPA3/4GfPopa4vkTvn2RPClncbEMGdz8cXs+BNPhNb1l7+w80pLWc2klib5dZlMwDvvsJIS\nd9wB/PnPodOs//EPNmr56CM2fxhhl29PBJ+uyEiW9nnZZWwR2UsvMYcfjDffBO68kzmDYcMAu1P+\nvRrkRh8hBIBnw8vr5C2v7cUDWVmsLs0777Dw0UCx+64uZgRfeQXYtas77VbOyqI91yGkpgIff8z+\nzZ8/cJquywX8938DzzzDPocvp19OXb6VygB7/jt2sDUK11/P1t8EwuNhDnb5cvYZfIM0XwlsKQkB\nPXX52is+nq3pqKgA5sxh4bxAeL3AY48Bv/0t+xy+dNw4UxycHie63AovN5bAkHMIcsSelcj3l8M4\nKbUOQSo86+KFjAxW9M1uZwZi3bpux9DZyZxFcTFQU8NKKOTkdF8r554IfRemJSczIx8VxcokrFnT\nvUrc6WQpoWedBRw8yEpOFBZ23yspOgmtXa2ylJruqysxkRnTjAxg4kRWqsM32exysdDQuecCn30G\n7NkDjBnTfa9oYzRMkSa0u6Qvd++rKy6Ovfe4cay9/vrXbofldgMffsgKDL73HmuviRO772UwGPz7\nIvDKkHMIPPbErVY+J2/lDLHJ3V5DaYTgIyGBhR1eeAH43/9lue45Ocwo//nPLFT0zjv9n3GcKQ4u\nj0uWnqWt09avRERsLAu7vPwyq/iZns50WSxM04MPsjmD1NTe94qMiERidCKaO6U3dKAV1DExLEy1\nbh1bKJaZyXQlJbGKpffcwwxwoPRZuUYvgUpyR0WxOZ4NG1il1Jycbl2//z0bBX7ySeCFlbzvnKbP\nIQSA5xCIrks4vDkEgMXpZ85k/zo6gIYGZmiDLab0lZpucjQhKyEr7Pd2uBwgIpiN/fcvANg8x/Tp\nbORSX88cVlxc8Hv6dEkpW+0lL5o7mwesZfRf/8V63J2dQF0dc6Ch6nn5dOUn5YetCwhe6uOss9gI\nqquL6bJYmNMXootXhpRD4DmNklfDy2t7KZ12ygOxsUC+QHslh0PwGbdQi/LMZvG6pNDW1YZYUyyM\nEcHNUUyMurpcHhccbkfADW16Eh0tfDEd7w5BDxkF4HRyCENd11AhJTYFjY4BZjEFImdhOx8pZo51\ndUjT1dzZDEuMRZaS3D7k0OVwhbmiUAC6Q+iDx8Mm/uTctu50mEOQU1dSEptAlFqaeyg5BDl6lkoY\nXl2XOOTQpeSk9JByCHIYuNZWFgeUo8S0Dzk2fXE62b9QMV0x+Epzu1zh34OIfTY5NhPyERkpT2nu\noeQQUswpshgSufYc8JESK12XIiMEmXRJ3eO5LynmFDRJXN2tZMhpSDmEpCSWAialZyl3bxdgsU+D\ngU2KhUtLi7wlpgF2L98+EuHS2cmcp1x7IfiQOo/g2/VuqJBsTpYcalCqx8tjyCg5hlNdMj1HpRhS\nDsFoZBNiwergh0IJhwBID2fpusRht0svg84TyeZkWXqWSsTqeRy5yBWa4TFkpDsEEUg1JHIvsvIh\ndR5BSV28thePurRCjsnIJkcTkmP47PEqETLicYQgly6lGHIOQaohkXuRlY+h2hM/3dpLK+Tq8fLY\nE1fKUckyh8BpeynFkHMIUmPPPBtepXTx2l486tIKbidvZQgZ8Zp2qoSjkivEphRD0iHwanh1XcLh\nVZdWcDt5K4MuXmP1SunSJ5VVhFdDInUOQUldvLYXj7q0gte8etnSOxUKzUipeKpEe8VHxUuueKo7\nBBHw6hD0WL04eNWlFXKFQOTOq0+KTkJbVxvcXnfY91DC8EYboxEVGQW7M/yUQyUcVc+6VOGiOwQR\n8NoT59XA8Rqr51WXVsSaYuEhj6SyBT1r+8tFZEQkkmKSJFU8VcIhANJHVTzrUooh5xB4Nby8hkB0\nXYMDg8GAFHNK2BOKbq8bdqcdSTEyLik/hVQDp4SjAqSneCqpS3cIKsGrQ+C1x8tze/GoS0ukTEg2\ndzYjKSYJEQb5f/JSdDlcDnjIM2BJbilIcVRExNJ0ZQ6xAdIn4nWHIAJeF6bpusQhhy4l5ly0RIqB\nU2L+wIeUVEpfJo+cFUV9SHFUbc42xBhjYIo0yaxK2nN0e91od0rfCW4ghpxD0OcQxMHzyIVHXVoi\nJQSiVPgDkNbjVSpOD0hzVErrkjrSUwpBDsHj8aC4uBizZ8/u99pTTz2F4uJiFBcXY+LEiTAajWg+\nZfm2b9+OsWPHYtSoUXjiiSfkVT4AvGbz8BoT53VlN6/tpSVSRwiKGTgJMXFeHZXSusKtS6XkcwQE\nOoTnn38eRUVFAYd1S5cuxb59+7Bv3z489thjKCkpgcVigcfjwR133IHt27fj4MGDWLduHQ4dOiT7\nB+iLFIfgdrNtDUNtzxcOPI8QeNQVH88qqYZbmnsoOgRee7zJMZw6Kk7bi1ddgACHUFlZia1bt+Lm\nm28Ouchj7dq1mDdvHgBgz549GDlyJAoKCmAymTB37lxs3LhRHtVBkGLgWlpYOWg590Lw4SszHc46\nmc5OVs7ZLP+8m79sdTiluZXYC8GHrzR3S0t41w9FhyA1NCN3Tr0PKaEsJec2eJ1zkTK3oaQuQMCe\nyvfccw9WrFiB1hDF5Ts6OvD+++/jxRdfBABUVVUhr8dGo7m5udi9e3e/65YvX+7//5KSEpSUlAiU\nHpjERFb62ONhG62IQUkjYjIx42u3h96Iuy9K7IXQE1+8Pkvkdr0dHUBUFPunpK7UVOHXlJaW4uOP\nS9HaCjz3nDK6tCLZnIwfbT+Gda2iIwROQ1m8zm3w2l5ACIewZcsWpKeno7i4GKWlpUFvtHnzZpx/\n/vmwnLKoQrMGejoEOYiIYE6hpQVIFtluSvcqfXFxsQ5BLV1iHYJausRQUlKCyZNL8NxzwEMPAQ8/\n/JAy4jRAymRkg6MBI60jZVbEkNLjbXA0IDVWhMcXgZS5jYYOZXWF66iU1AWECBl9/vnn2LRpEwoL\nC9WYCAsAABxvSURBVDFv3jzs3LkTCxYsCHju+vXr/eEiAMjJyUFFRYX/74qKCuTm5sokOzjhho2U\nNnC6LnHwqksrpPQsGzsakRKbIrMihpSYeGNHI1LMyuiS4qgaHcrqCru9FNQFhHAIjz76KCoqKlBW\nVob169fjoosuwpo1a/qd19LSgk8//RRXXnml/9iUKVNw9OhRlJeXw+l04s0338ScOXPk/wQB4NWQ\nhJtKeboaXl51aQWvPV4pBk7RnrgER3U66gJErkPwhYFWrVqFVatW+Y9v2LABM2fOhLnHrKfRaMTK\nlSsxc+ZMFBUV4YYbbsC4ceNkkh2ccNcinK4GjmdHpYSupqYmzJgxA6NHj8all17qT5Puy0Bp08uX\nL0dubq4/3Xr79u3iRYaBlJh4o6ORyxBIo0O5kYvVbA274qmS7RVrioXb60anW3wmR2OHcroAEQ5h\n2rRp2LRpEwBg8eLFWLx4sf+1hQsXYu3atf2umTVrFg4fPowffvgBv//972WQK4xwDa/S2y6Gm1uv\n6xJHKF2PP/44ZsyYgSNHjuDiiy/G448/3u+cYGnTBoMBv/3tb/3p1j/96U/FiwwDqT1xpUINidGJ\naHe2w+URnyOsZI83KjIKZpMZrV3BE2IC0dDRoJijklLxVEldwBBcqQyE7xCamoAU5dpa1yUSpXRt\n2rQJCxcuBMA6Mxs2bOh3Tqi0aSl19sMl1hQLAOhwdYi+VsmeZYQhAlazNazCe0rOIQDhh2eUDs2E\nmyCg5MgFEJB2OhgJN9TQ1AT0yJSVHSm6MjPl1+PDYgHq68Vf19QkPpNLDBYLUFkp/rpQumpra5GR\nkQEAyMjIQG1tbb9zQqVN//nPf8aaNWswZcoUPP300/7sup7InVINdI8SfM5BCA6XA06PE/FRCqy4\n7KMrPS5d8DVEpGjIyKer0dGIQmuhqOuUdlRiRwilpaUoLS1F2RdlWHO8/zyuXOgjhB6oYeB0XcKR\nomvDhhmYOHEiAGDixIn+f76wpw+DwRAwRTpY2vStt96KsrIyfPPNN8jKysLvfve7gOctX77c/08O\nZwCE1+P19SqVKCDnI5wQSEtXC2JNsYiKVGghC8KbiHd5XGh3tStaM0isrpKSEixbtgxdF3ThkYcf\nUUzXkBwhWK3A4cPir1PawFmtwHffib9ODV08OgQpupYu/RBLljDD/l2fRs/IyMDJkyeRmZmJmpoa\npKf379UGS5vuef7NN98csMaXUoSTSqn0RCQQXghE6V44EGZ7ORqRbE5WpFS4j3ASBNpd7TBGGEWN\nDsWijxB6wHOPV9clnFC65syZg9WrVwMAVq9ejauuuqrfOcHSpmtqavzn/etf//KPRNQgnJ640hOR\nQPi6lHZU4ehSy1GF9RwV1jVkHUK4sXqlDZyuSzhK6brvvvvw4YcfYvTo0di5cyfuu+8+AEB1dTUu\nv/xyAMHTpu+9916cccYZmDRpEj755BM8++yz4kWGSTgpnkpPRALh61LaUaWYxetSw1GFo0uNkd6Q\nDBmdbj1eqZxuupKTk7Fjx45+x7Ozs/Hee+/5/541axZmzZrV77xAizPVgteeZTgVT9UaIZxoOSHq\nGjUcVTh1qdQY6Q3JEUI4C9NcLlasLTFRGU1AeLqImIFTcvevcBfyqTGHYLOJrxCrtC4t4bVnGdYI\nQYXQDNcjhDDmNpTWNSQdQkoK0Cgyxde35aKCiRhh6XI4WME+JUpf+7BaWTFAj0f4NV6v8iuVzWZW\nsbZd5I6BQ9khpMWmob5dXI6wkgXkfHCrKy4MXSo4hLS4NNR38KdryDqEpiZxPUs1jEh8POB0Al1d\nwq9RQ1dkJBsZiQnPtLayz2NUOOgo1ok6nWxvB7EVZQcL6XHpqGuvE3WNGiGjcHUpbeDC0aV0ATmA\n3+c4JB1CVBTbeyDEFg69UMPwGgziDZxavd2hokuNkZ6WpMWliTdwKoSMwtWltIFLi+WzJ54WG0Z7\n6SGj8BkqBk7XxacurUiPS+fSwPGqy+eoxJQaUcOBWs1W2J12OD1OwdfoISMJ8GpIUlKAhgbh5+u6\n+HyOWuHrWYoycCplzbR0togqcKeGrlhTLEwRJrQ52wRfo0poxhCBFHMKGjqE/+jUGFHpDuEUp7uB\n03UNDuKi4hBhiEC7S/hMuyo9S0OE6EwjNXQB4uP1auoSM+GtjxAkwKsh0XWJg1ddWiIm/tzp7kSX\nuwsJUcrPsovRRUSq9HgB8ZlGauT7A+LnXfR1CBJITeUzBJKayqeB41mX2OeoZEluHhDTs6xrr0N6\nXLqihe18iNFl67Qh1hSLaGO0wqrEjRA63Z3ocHXAGqPgwp9TiJl3ISL/s1SSIesQeO1Z6rrEwasu\nLRHTs6y11yIjPkNhRQxudYnINKpvr1fNgYoZUfkcaIwxRlFNukM4xelu4HRdgwcxPcu69jpkxKlj\neHnWJdhRtavnqES3lwq6dIdwitPdwOm6Bg9iepa17bWKhxl88KxLqOGttXPaXirp0h3CKZSuF+RD\n1yUOXnVpiZiepZqhGZ51CTW8qo+oBM651LbXqqJLdwinqK9nE5hKIzbfX9fF53PUEjE9y7oO9Qwc\nt7pEZBmpGTISM+eih4wkIsaQdHWxSqdKFmrzIUYXETPSaWnKagK6dQld71Rfr46upCRW3M4lcL2T\nWrq0RFTPUsUQCNe6RMTq02P501XbXquKLt0hgBndlBRWVVRpxFQWbW3trsukNGIqi7pcTJsasfqI\nCNZmTQJK7ROdHg5BVDaPSqEGgGNdIuc21Mx+4i0ra8g6hIQE4ZVF1TQiRiPTJqSyqNrGTagTbWxk\nzkANBwoI12W3M6cWq9yWs1zAY3YKwK8uX8hISLmPWrt6jsoSY4HD5UCXO7SRUmtuY8g6BDGVRdU2\nvEIXgem6GLzq0gox9YzUDM1YYiyCC7apqSvGGIMYYwxaulpCnqvG4i8fBoMBqbGpgpyoWllZQ9Yh\nAPw6BF2XOHjVpRVmkxlmoxm2zuDb3Lm9btg6barU5QFYPaOMuAzU2mtDnqtmyAgAshKyUNNWE/I8\nNUNGgAhdeshIOrwaEl2XOHjVpSXZCdmobqsOek5DRwOsMVYYI9TbOj07IRtVbVVBz7E77SAixEfF\nq6RKWHt5vB40OZpUc6CAMF2AnnYqC0Lr4GgRAtF1CYdXXVoixJCoGf7wIUaXGuUhfAjR1ehohCXG\noroDDaWr3dkOL3lVcaBD2iGkpwO1oUevqhsSXZc4eNWlJUIMSXVbNbITslVSxOBVV05CDpe6suOz\nUW0XpksNBzqkHUJGBp+GRNclDl51aYkQw1vVWoWcxByVFDG41hXC8Fa1ViEngcP2alNPl+4QoN7i\nLx+6LnHwqktLhPR41TQkPnjVJdjwquyochIFtJeKDlR3CNB7vD50XYMHIZO3la2VXBperXRVtfLZ\nXjzpGtIOITMTOHky9HlqGxKedfFoeHltLy3htcc76HVx6ED1kJFMCOlZejxs1bCau2yJ6fGqWajN\npyvUeie1daWmsmfkdgc/73QobOdDcKyeRwPXWoXcxFyVFDGyE7JRY68JuphPi7mN1NhUtHa1Bl2t\nrKYDPS0cQjADV1fHnEFkpHq6hBi4tjb233j1UrURF8fKUdjtA5/jdrO6Qmr2xCMjWamM+iALOonY\nKCIzUz1dWpIZn4laey285B3wHC164snmZHS4OuBwOQY8R4ueeIwxBvFR8Wh0DLygRQtdEYYIZMZn\nosY+8OI0NR37kHYI8fGshEUwA1dTA2RlqacJEGbgfLpUTNUGwJxosPCMz4Ea1UvVBhB6VNXaytpV\nTQeqJdHGaCTFJA1YXbTL3YWWzhbV1yEYDAa2+nYAA0dEqGmrUT29Ewg9etFihAAI0KWPEOQjlCHR\nwiEAwnRlq/+bCamruppPXWKeY1NTE2bMmIHRo0fj0ksvRfMAlQZvuukmZGRkYOLEiWFdrzQ5CTmo\naK0I+Fp1WzUy4zMRYVD/J56TkIOKlsC6GjoaEBcVB7PJrLKq4LocLgc6XB1IMasYOz5FTuLAujxe\nD2rttao50NPCIQTr8VZXa+cQeNXFqwOVq70ef/xxzJgxA0eOHMHFF1+Mxx9/POB5v/zlL7F9+/aw\nr1eaQmshypvLA75W0Vqhepzex2DVlZOYo+rqaR+FloF1nbSfhNVsRVRklCpahrxDCJU5o1VPXIgu\nLQzvYNYl9Dlu2rQJCxcuBAAsXLgQGzZsCHjeBRdcAGuA/TiFXq80hZZClNnKAr5WZivDcOtwlRUx\nCi2FKGvWdQklqK5mdXWpHAlWHyE93gkT1NPjg+eeeKiQEY8jBDHtVVtbi4yMjFP3zUCtkJSvMK5f\nvny5//9LSkpQUlIi6n1CUWgpxKGGQwFfO9Z8DIXWQlnfTyiFlkJ8XP5xwNeO2Y6h0KKdri8rvwz4\nmqa6rIXYdGRTwNd8ukpLS1FaWqq4liHvEELlsNfUADNmqKfHR2YmM64DUVMDnHGGenp8ZGYC+/YN\n/HpNDTB5snp6fGRmAt98M/DrfR3CjBkzcPLUg+85B/CnP/2p13UGg0FSmCDY9T0dghIUWgux9Yet\nAV8rs5VhesF0Rd9/IAqthfjHN/8I+FpZcxmK0opUVsQotPLTE++JkJFe3w7FQw89pIiWIR8yys0F\nKgLP1wDQrsc7WHVpNXIR214ffvghvvvuOwDAd9995/83Z84cZGRk+J1FTU0N0tPFZeJIvV4ughmS\nY7ZjXBo4rUcIPLZXgaUAJ1pOBEwhPtasrq4h7xDy8vg0cINVl1aOSs72mjNnDlavXg0AWL16Na66\n6ipRWqReLxeF1kIcbzke0JCUNZdpFjLKTcxFQ0dDwMVWWhreZHMyCASbo//GQlo6KrPJjGRzcsDU\n0zJbmaq6hrxDyM8f2JB4vSxersVipmC6AH4dgpYjhOpqtrI8EGJ03Xffffjwww8xevRo7Ny5E/fd\ndx8AoLq6Gpdffrn/vHnz5uG8887DkSNHkJeXh1deeSXo9WoTa4pFUnRSvx23Ot2daOhoUH2RlY/I\niEjkJub2y5zxeD040XICBZYCTXQZDAYUWgpxzHas13Ei0tSBAsy599UFnHJUKuoa8nMIPgNH1H+R\n18mTgNUKxMSorysriy1MczqBqD4ZZS0tbEVwgAQXxbFaAZeLLfRKTOz9mtPJNGuRlRUTA1gszIH3\nfX8i9ozz84XdKzk5GTt27Oh3PDs7G++9957/73Xr1om6XgtGp4zG4cbDvRYuHW44jJHJIxEZoeLy\n+wF0jUkd4z9W1lyGjPgMTdYg9NV1ZvaZ/mO17bWINERqsgahl66Gw7hw2IX+Y21dbbB12pCfJPCL\nLQNDfoQQHw9ERwfegrG8HCgoUFsRw2hkmTOBJpaPH2e6NEiJhsEw8OilspIZY7VXKfsYaPRSVwfE\nxp4+q5R7MiF9Ar6v+77XsQP1BzA+bbxGihgBddVxrCt9vCZrEHxMSJuA7+t76zpYfxBjU8equrhw\nyDsEYGADd/w4MGyY+np88KprIMNbXq63F29MTJ+I7+q+63WMB4cwMX1iYEeVzqFD4KG9Mibiu1rt\nn+Np4RAGMnBaGxJdlzh41aUlwXq8WsKr4dV1Bee0cQgnTvQ/rmXICBh8unyhLK3gtb20xGdIPN7u\n2fZ9J/dhUsYkDVUBY1PH4oemH3plGu2r0V7XCOsI1LbXorWr1X9sX80+TMrUVldWfBY85MFJe/ei\nKS10CXIIHo8HxcXFmD17dsDXS0tLUVxcjAkTJvRaPFFQUIAzzjgDxcXFOPvss2URHA6FhUBZgPRj\nrXuWui5x8KpLS6xmK3IScvxho8rWSnS4OjAyeaSmuswmM4rSirC3ei8AoMnRhIrWCkzMmBjiSmWJ\njIjElOwp+KLiCwBAh6sDB+oP4MysM0NcqSwGgwHn5p6Lz058BgBwe934qvornJt7rqo6BDmE559/\nHkVFRQEnXZqbm3H77bdj8+bN+P777/HOO+/4XzMYDCgtLcW+ffuwZ88e+VSLZPRo4PDh/sePHdO2\nZ6nrEgevurTmwmEX4pPyTwAAn1d8jqm5UzWdIPVx4bAL8clxpuvLyi9xVvZZMEZon9g4bdg0v66v\nqr7ChPQJmmY++bgwv7u99p/cj/ykfFhiLKpqCOkQKisrsXXrVtx8880Bdxtau3Ytrr32WuTmsgqG\nqX22rAq2Q5FajBnT35C4XKxnOWqUNpqAwLqIgCNHgLFjtdEEdOvq++j+8x9tdY0cyUYIfTcWOnxY\nW11aM71gOj489iEA4L2j72HmiJkaK2JML5iOD378AABfukoKSvhsr0L2HIlIM10h3fU999yDFStW\noLW1NeDrR48ehcvlwvTp09HW1oa77roL8+fPB8BGCJdccgkiIyOxePFi3HLLLf2uV7oAGACMGMEm\nI3vm/P/wA4tJR0fL/naCyclhO6P1zPmvrAQSEoCkJO10JSezdjl5snuxV1MT4HBoswbBh9nM9JSV\ndTtyhwOoqgKGn1r8qlYRMJ6YPWY2btt6Gw7VH8KWI1vw6EWPai0JAHDpiEtx06ab8N3/b+/uYpq6\n+ziAf4tlhhdDVAQfoPGNulKR9mDwyLQuKKggTJ1miBHIfInLEo3uZvNmiZkhMcYLjZnDPImLjxdc\nuAsZNsb4gohViII8zwYXy1Jny4vBqVFpkNr+n4tDQbTA/xyg56z9fa4snv74evqzv7bn9H+e/A+/\ntP+C21/eVjsSAOmdS9erLjzoeoCa32rwa9mvakcCAOSk5OCt/y0cLgcu/PcCft78c8gzjDkQ6urq\nkJSUBEEQRv1P5vV60dLSguvXr8Pj8SA3NxcrVqyA0WhEY2MjUlJS0Nvbi4KCAphMJthsthH3n+oF\nwABpCBgMwJ9/AhkZ0s/UfrULSJerNBqlV7g5OdrJBQy/SwgMhEAutT+JCOQKDIQ//pCGQXS0dDtU\ni4BpSfxH8fg652tkn81GeVa5Klf9Cma6fjq+WfENlv97OT7P+BzG2Sq+HX+HPkqPb1d+i1XnVmHd\nonWqH1AO0Ol0OLzqMPL/k4+VhpXITcsNeYYxB4LD4UBtbS3sdjv6+/vx8uVLVFRU4Pz580PbGAwG\nJCYmIiYmBjExMVi9ejXa2tpgNBqRMvhycs6cOdiyZQuam5s/GAih8vHHQEfH8EDo6NDOE29Hx/BA\n0Eouk0nKEnhu1UquwP4qLpZuayWX2n7I+wGfLf4M2f/KVjvKCN+t+g5rF65V/eyi9+1fvh+5abnI\nTFJh7fsx7BJ2wZJsgSnRpMpxoDGPIVRVVcHlcsHpdKKmpgZr1qwZMQwAYNOmTWhsbITP54PH40FT\nUxPMZjM8Hg9eDV4pvq+vD1evXv3gUoShtGwZcP/+8O0HDwBBUC3OEMolj1ZzqS1KFwUxTUT0tGi1\no4yg0+mwPHU5putV/Gw2CJ1Oh5zUHE0cTH7fspRliPsoTpXfLet7CIGJVV1djerqagCAyWTChg0b\nkJWVBVEUsXfvXpjNZvT09MBms8FqtUIURRQXF2PdunWT/y/gJIpAU9Pw7eZm6WdqC5ZLxTN0h/yT\n9pcWchESDnRMxdOAdDpdyM5C+vtv6Tz2Z8+klTGzs6U1cNT+TLyvD0hKkvL19UmnTz5/rt56QQFe\nr7TQXWcnMG2atO7S06fSgV01+f1AYiLw++/A7NnSn//6a/SFAEPZY1r4vSQyTFV/qX9ScIjMni2d\nx97QIB2UXL9e/WEAAHFx0vGDq1elVU7z89UfBoB0kPbTTwG7XTrj6JNP1B8GgHQgvqAAqKuTvoy2\nZIk6q8ISEo408NQTOqWlwI8/SksdfP+92mmGlZYCP/0EvH4NfPWV2mmGbd8OnD0rDYQvvlA7zbDS\nUuDYMem0XS3lIuSfLmI+MgKkJ9yVK6Unkro66dWmFvT3A6tXS0s4X7umjXcIgPSxUX4+8OYNUF+v\nznUjgvH5pLOMuruBxsaxl72mj4xIOJqq/oqogUAiDw0EEo6mqr808hqZEEKI2mggEEIIAUADgRBC\nyCAaCIQQQgDQQCCEEDKIBgIhhBAANBAIIYQMooFACCEEAA0EQgghg2ggEEIIARBGA2Eyr6MbCbUm\nu55Wa4UDre5bqqVeralCAyFCa012Pa3WCgda3bdUS71aUyVsBgIhhJCJoYFACCEEgAaWvyZkqqm1\n/DUhUynsrodACCFEO+gjI0IIIQBoIBBCCBlEA4EQQgiAEA6EK1euwGQywWg04tixY0G3OXDgAIxG\nIywWC1pbWxXXqq+vR0JCAgRBgCAIOHr0aNA6u3btQnJyMpYuXTrq7+LNNF4t3kwA4HK5kJeXhyVL\nliAzMxOnTp1SnI2nFm+2/v5+iKIIq9UKs9mMw4cPK87FU0vOPgMAn88HQRBQUlKiOJdc4d7XPPV4\nc1Ffy8sVENK+ZiHw9u1btmjRIuZ0OtnAwACzWCysvb19xDaXL19mhYWFjDHG7t27x0RRVFzr5s2b\nrKSkZNxcDQ0NrKWlhWVmZgb9e95MPLV4MzHGWHd3N2ttbWWMMfbq1Su2ePFixfuLp5acbH19fYwx\nxrxeLxNFkd2+fVtRLp5acnIxxtiJEyfYjh07gt5HTi5ekdDXPPV4c1Ffy8/FWGj7OiTvEJqbm5Ge\nno758+cjOjoa27dvx6VLl0ZsU1tbi8rKSgCAKIp48eIFnjx5oqgWwHdKls1mw8yZM0f9e95MPLV4\nMwHA3LlzYbVaAQDx8fHIyMhAV1eXomw8teRki42NBQAMDAzA5/Nh1qxZinLx1JKTy+12w263Y8+e\nPUHvIycXr0joa556vLmor+XnCnVfh2QgdHZ2wmAwDN1OS0tDZ2fnuNu43W5FtXQ6HRwOBywWC4qK\nitDe3j5puYNl4qE006NHj9Da2gpRFCecbbRacrL5/X5YrVYkJycjLy8PZrNZca7xasnJdejQIRw/\nfhxRUcFbejIfy7FqRlpfK81Ffa3Nvg7JQOD9ks77EzDY/XhqZWdnw+Vyoa2tDfv378fmzZv5girM\nxENJptevX2Pbtm04efIk4uPjJ5RtrFpyskVFReHhw4dwu91oaGgIuj4Lb67xavHmqqurQ1JSEgRB\nGPOV12Q9lnLvH859rSQX9bV2+zokAyE1NRUul2votsvlQlpa2pjbuN1upKamKqo1Y8aMobdthYWF\n8Hq9ePbs2YRzj5aJh9xMXq8XW7duxc6dO4M2jJxs49VSsr8SEhKwceNG3L9/X3Gu8Wrx5nI4HKit\nrcWCBQtQVlaGGzduoKKiYsK5xkN9LT8X9bXG+3pCRyA4eb1etnDhQuZ0OtmbN2/GPfh29+7dUQ+O\n8NTq6elhfr+fMcZYU1MTmzdv3qjZnE4n18G3sTLx1JKTye/3s/Lycnbw4MFRt+HNxlOLN1tvby97\n/vw5Y4wxj8fDbDYbu3btmqJcPLXk7LOA+vp6Vlxc/MHP5T6WPCKlr8erx5uL+lperneFqq/1ykcJ\nP71ej9OnT2P9+vXw+XzYvXs3MjIyUF1dDQDYt28fioqKYLfbkZ6ejri4OJw7d05xrYsXL+LMmTPQ\n6/WIjY1FTU1N0FplZWW4desWnj59CoPBgCNHjsDr9crOxFOLNxMA3LlzBxcuXEBWVhYEQQAAVFVV\n4fHjx7Kz8dTizdbd3Y3Kykr4/X74/X6Ul5dj7dq1ih5Hnlpy9tm7Am+ZleSSIxL6mqceby7qa+33\nNa1lRAghBAB9U5kQQsggGgiEEEIA0EAghBAyiAYCIYQQADQQCCGEDKKBQAghBADwfwJyXZ807NQ0\nAAAAAElFTkSuQmCC\n"
      }
     ], 
     "prompt_number": 9
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.9,Page Number: 190<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "# variable declaration", 
      "R_E=10.0**3;      #emitter resistance", 
      "R_L=10.0**3;      #resistance in ohm", 
      "R1=18.0*10**3;    #R1 in ohm", 
      "R2=18.0*10**3;    #R2 in ohm", 
      "B_ac=175.0;      #AC value", 
      "V_CC=10.0;       #voltage in volt", 
      "V_BE=0.7;      #base-emitter voltage", 
      "V_in=1.0;        #input voltage in volt", 
      "", 
      "#calculation", 
      "", 
      "R_e=(R_E*R_L)/(R_E+R_L);        #ac emitter resistance R_e", 
      "R_in_base=B_ac*R_e;             #resistance from base R_in_base", 
      "", 
      "#total input resiatance R_in_tot", 
      "R_in_tot=(R1*R2*R_in_base)/(R1*R2+R1*R_in_base+R2*R_in_base);", 
      "print \"total input resistance = %.2f ohms\" %R_in_tot", 
      "V_E=((R2/(R1+R2))*V_CC)-V_BE;   #emitter voltage", 
      "I_E=V_E/R_E;                    #emitter current", 
      "r_e=25.0*10**-3/I_E;            #emitter resistance", 
      "A_v=R_e/(r_e+R_e);", 
      "print \"voltage gain =  %.2f\" %A_v", 
      "#ac emitter current I_e", 
      "#V_e=A_v*V_b=1V", 
      "V_e=1.0;                          #V_evoltage", 
      "I_e=V_e/R_e;                    #emitter current", 
      "I_in=V_in/R_in_tot;             #input current in ampere", 
      "A_i=I_e/I_in;                   #current gain", 
      "print \"current gain = %.2f\" %A_i", 
      "A_p=A_i;                        #power gain", 
      "#since R_L=R_E, one half of the total power is disspated to R_L", 
      "A_p_load=A_p/2.0;                 #power load", 
      "print \"power gain delivered to load = %.2f\" %A_p_load"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "total input resistance = 8160.62 ohms", 
        "voltage gain =  0.99", 
        "current gain = 16.32", 
        "power gain delivered to load = 8.16"
       ]
      }
     ], 
     "prompt_number": 10
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.10, Page Number: 193<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "# variable declaration", 
      "V_CC=12.0;        #source voltage in volt", 
      "V_BE=0.7;         #base-emitter volatge", 
      "R_C=1.0*10**3;    #resistance in ohm", 
      "r_e_ce=5.0;       #for common emitter amplifier", 
      "R1=10.0*10**3;    #resistance in ohm", 
      "R2=22.0*10**3;    #resistance in ohm  ", 
      "R_E=22.0;         #emitter resistance in ohm", 
      "R_L=8.0;          #load resistance in ohm", 
      "B_DC=100.0;       #dc value", 
      "B_ac=100.0;       #ac value", 
      "", 
      "#calculation", 
      "pt=R2+B_DC**2*R_E     #temp variable", 
      "V_B=((R2*B_DC**2*R_E/(pt))/(R1+(R2*B_DC**2*R_E/(pt))))*V_CC;", 
      "V_E=V_B-2.0*V_BE;      #emitter voltage", 
      "I_E=V_E/R_E;           #emitter current", 
      "r_e=25.0*10**-3/I_E;   #for darlington emitter-follower", 
      "P_R_E=I_E**2*R_E;      #power dissipated by R_E", 
      "P_Q2=(V_CC-V_E)*I_E    #power dissipated by transistor Q2", 
      "R_e=R_E*R_L/(R_E+R_L); #ac emitter resi. of darlington emitter follower", 
      "#total input resistance of darlington", 
      "kt=R_e+r_e             #temp varaible", 
      "R_in_tot=R1*R2*B_ac**2*(kt)/(R1*R2+R1*B_ac**2*(kt)+R2*B_ac**2*(kt));    ", 
      "R_c=R_C*R_in_tot/(R_C+R_in_tot);    #effective ac resistance", 
      "A_v_CE=R_c/r_e_ce;     #voltage gain of common emitter", 
      "A_v_EF=R_e/(r_e+R_e);  #voltage gain of common emitter amplifier", 
      "A_v=A_v_CE*A_v_EF;     #overall voltage gain", 
      "", 
      "#result", 
      "print \"voltage gain of common emitter amplifier= %.2f\" %A_v_CE", 
      "print \"voltage gain of common emitter amplifier= %.2f\" %A_v_EF", 
      "print \"overall voltage gain = %.2f\" %A_v"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "voltage gain of common emitter amplifier= 172.08", 
        "voltage gain of common emitter amplifier= 0.99", 
        "overall voltage gain = 169.67"
       ]
      }
     ], 
     "prompt_number": 11
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.11, Page Number: 196<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "# variable declaration", 
      "B_DC=250.0;    #dc value", 
      "R_C=2.2*10**3; #resistance in ohm", 
      "R_E=1.0*10**3; #emitter resistance", 
      "R_L=10.0*10**3;#load resistance", 
      "R1=56.0*10**3; #resistance in ohm", 
      "R2=12.0*10**3; #resistance in ohm", 
      "V_BE=0.7;      #base-emitter voltage in volt", 
      "V_CC=10.0;     #source voltage in volt", 
      "", 
      "#calculation", 
      "#since B_DC*R_E>>R2", 
      "V_B=(R2/(R1+R2))*V_CC;", 
      "V_E=V_B-V_BE;   #emiiter voltage", 
      "I_E=V_E/R_E;    #emitter current", 
      "r_e=25.0*10**-3/I_E;  #r_e value", 
      "R_in=r_e;       #input resistance", 
      "R_c=R_C*R_L/(R_C+R_L);    #ac collector resistance", 
      "A_v=R_c/r_e;    #current gain", 
      "#current gain is almost 1", 
      "#power gain is approximately equal to voltage gain", 
      "A_p=A_v;  #power gain", 
      "A_i=1;    #current gain", 
      "", 
      "#result", 
      "print \"input resistance = %.2f ohms\" %R_in", 
      "print \"voltage gain = %.2f\" %A_v", 
      "print \"current gain = %.2f\" %A_i", 
      "print \"power gain = %.2f\" %A_p"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "input resistance = 23.48 ohms", 
        "voltage gain = 76.80", 
        "current gain = 1.00", 
        "power gain = 76.80"
       ]
      }
     ], 
     "prompt_number": 12
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 6.12, Page Number: 197<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "import math", 
      "# variable declaration", 
      "A_v1=10.0;", 
      "A_v2=15.0;", 
      "A_v3=20.0;", 
      "", 
      "#calcultion", 
      "A_v=A_v1*A_v2*A_v3;    #overall voltage gain", 
      "A_v1_dB=20.0*math.log10(A_v1); #gain in decibel", 
      "A_v2_dB=20.0*math.log10(A_v2); #gain in decibel", 
      "A_v3_dB=20.0*math.log10(A_v3); #gain in decibel", 
      "A_v_dB=A_v1_dB+A_v2_dB+A_v3_dB;        #total gain in decibel", 
      "", 
      "#result", 
      "print \"overall voltage gain = %.1f\" %A_v", 
      "print \"Av1 = %.1f dB\" %A_v1_dB", 
      "print \"Av2 = %.1f dB\" %A_v2_dB", 
      "print \"Av3 = %.1f dB\" %A_v3_dB", 
      "print \"total voltage gain =%.1f dB\" %A_v_dB"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "overall voltage gain = 3000.0", 
        "Av1 = 20.0 dB", 
        "Av2 = 23.5 dB", 
        "Av3 = 26.0 dB", 
        "total voltage gain =69.5 dB"
       ]
      }
     ], 
     "prompt_number": 13
    }
   ]
  }
 ]
}