summaryrefslogtreecommitdiff
path: root/Electronic_Devices_/Chapter16.ipynb
blob: b082e3ac1dc88565b43066f1412ffaad4a4cec6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
{
 "metadata": {
  "name": "Chapter_16"
 }, 
 "nbformat": 2, 
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown", 
     "source": [
      "<h1>Chapter 16: Oscillators<h1>"
     ]
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 16.1, Page Number: 524<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "%pylab inline"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "", 
        "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", 
        "For more information, type 'help(pylab)'."
       ]
      }
     ], 
     "prompt_number": 1
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "import math", 
      "R1=10*10**3;", 
      "R2=R1;", 
      "R=R1;", 
      "C1=0.01*10**-6;", 
      "C2=C1;", 
      "C=C1;", 
      "R3=1*10**3;", 
      "r_ds=500;", 
      "f_r=1/(2*math.pi*R*C);", 
      "print('resonant frequency of the  Wein-bridge oscillator in Hertz = %.4f'%f_r)", 
      "#closed loop gain A_v=3 to sustain oscillations", 
      "A_v=3;", 
      "#A_v=(R_f+R_i)+1 where R_i is composed of R3 and r_ds", 
      "R_f=(A_v-1)*(R3+r_ds);", 
      "print('value of R_f in ohms = %d'%R_f)"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "resonant frequency of the  Wein-bridge oscillator in Hertz = 1591.5494", 
        "value of R_f in ohms = 3000"
       ]
      }
     ], 
     "prompt_number": 2
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 16.2, Page Number: 525<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "import math", 
      "A_cl=29;    #A_cl=R_f/R_i;", 
      "R3=10*10**3;", 
      "R_f=A_cl*R3;", 
      "print('value of R_f in ohms = %d'%R_f)", 
      "#let R1=R2=R3=R and C1=C2=C3=C", 
      "R=R3;", 
      "C3=0.001*10**-6;", 
      "C=C3;", 
      "f_r=1/(2*math.pi*math.sqrt(6)*R*C);", 
      "print('frequency of oscillation in Hertz = %f'%f_r)"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "value of R_f in ohms = 290000", 
        "frequency of oscillation in Hertz = 6497.473344"
       ]
      }
     ], 
     "prompt_number": 3
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 16.3, Page Number: 530<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "import math", 
      "C1=0.1*10**-6;", 
      "C2=0.01*10**-6;", 
      "L=50.0*10**-3;    #in Henry", 
      "C_T=C1*C2/(C1+C2);    #total capacitance", 
      "f_r=1/(2*math.pi*math.sqrt((L*C_T)));", 
      "print('frequency of oscillation in Hertz when Q>10 is \\n\\t %f'%f_r)", 
      "Q=8.0;    #when Q drops to 8", 
      "f_r1=(1/(2*math.pi*math.sqrt((L*C_T))))*math.sqrt((Q**2/(1+Q**2)));", 
      "print('frequency of oscillation in hertz when Q=8 is \\n \\t %f'%f_r1)"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "frequency of oscillation in Hertz when Q>10 is ", 
        "\t 7465.028533", 
        "frequency of oscillation in hertz when Q=8 is ", 
        " \t 7407.382663"
       ]
      }
     ], 
     "prompt_number": 4
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 16.4, Page Number: 535<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "R1=10.0*10**3;", 
      "R2=33.0*10**3;", 
      "R3=10.0*10**3;", 
      "C=0.01*10**-6;", 
      "f_r=(1/(4*R1*C))*(R2/R3);", 
      "print('frequency of oscillation in hertz is \\n\\t%d'%f_r)", 
      "#the value of R1 when frequency of oscillation is 20 kHz", 
      "f=20.0*10**3;", 
      "R1=(1/(4*f*C))*(R2/R3);", 
      "print('value of R1 in ohms to make frequency 20 kiloHertz is \\n\\t%d'%R1)"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "frequency of oscillation in hertz is ", 
        "\t8250", 
        "value of R1 in ohms to make frequency 20 kiloHertz is ", 
        "\t4125"
       ]
      }
     ], 
     "prompt_number": 5
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 16.5, Page Number: 537<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "import pylab", 
      "import numpy", 
      "V=15.0;", 
      "C=0.0047*10**-6;", 
      "R3=10.0*10**3;", 
      "R4=R3;", 
      "R2=10.0*10**3;", 
      "R1=68.0*10**3;", 
      "R_i=100.0*10**3;", 
      "V_G=R4*V/(R3+R4);    #gate voltage at which PUT turns on", 
      "V_p=V_G;    #neglecting 0.7V, this the peak voltage of sawtooth wave", 
      "print('neglecting 0.7V,  the peak voltage of sawtooth wave = %.1f V'%V_p)", 
      "V_F=1.0;    #minimum peak value of sawtooth wave", 
      "V_pp=V_p-V_F;", 
      "print('peak to peak amplitude of the sawtooth wave = %.1f V'%V_pp)", 
      "V_IN=-V*R2/(R1+R2);", 
      "f=(abs(V_IN)/(R_i*C))*(1/(V_pp));", 
      "print('frequency of the sawtooth wave = %.1f Hz'%f)", 
      "", 
      "#############PLOT###############################", 
      "", 
      "t = arange(0.0, 2.0, 0.0005)", 
      "t1= arange(2.0, 4.0, 0.0005)", 
      "t2= arange(4.0, 6.0, 0.0005)", 
      "k=arange(0.1,7.5, 0.0005)", 
      "t3=(2*k)/k", 
      "t4=(4*k)/k", 
      "t6=(6*k)/k", 
      "", 
      "subplot(111)", 
      "plot(t, (6.5/2)*t+1)", 
      "plot(t1, (6.5/2)*t+1,'b')", 
      "plot(t2, (6.5/2)*t+1,'b')", 
      "plot(t3,k,'b')", 
      "plot(t4,k,'b')", 
      "plot(t6,k,'b')", 
      "", 
      "ylim( (1,8) )", 
      "ylabel('Vout')", 
      "xlabel('ms')", 
      "title('Output of the Circuit')"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "neglecting 0.7V,  the peak voltage of sawtooth wave = 7.5 V", 
        "peak to peak amplitude of the sawtooth wave = 6.5 V", 
        "frequency of the sawtooth wave = 629.5 Hz"
       ]
      }, 
      {
       "output_type": "pyout", 
       "prompt_number": 6, 
       "text": [
        "<matplotlib.text.Text at 0xa046eec>"
       ]
      }, 
      {
       "output_type": "display_data", 
       "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAETCAYAAADJUJaPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUVQXax/HfUdFUlBElLoGieOFmgJdM0xETs/LVNLEJ\nUJOsZrJVmaWvuVqJjePdUpya0szuMKuyN0xFQztqgksdxFXZi41BklATKHcR4ez3Dzq8YiDnwN7n\nOfvs32etViqy9yPZwz7nbL6YFEVRQERELqGD9ABERKQeLnUiIhfCpU5E5EK41ImIXAiXOhGRC+FS\nJyJyIVzqZDhHjx7FoEGD0KNHD6SlpbX6+/Pz89GhQwdYLBYHTAeEh4fj8OHDqh/38ccfx8qVK1U/\nLjkXLnVq1dtvv42hQ4eie/fu8PX1xYIFC1BWVmbz+wcGBuLgwYOqzdPe47344ot46qmnUFFRgWnT\npql+/NaUl5dj4cKF6NevH3r06IGBAwfimWeeQUlJCQDgm2++wR//+EfVz/uPf/wDL7zwAgDAbDYj\nICBA9XOQPC51uqGNGzdi6dKl2LhxI8rLy3Hs2DH8+OOPmDRpEq5evWrTMUwmE9T8Grf2Hu/8+fMI\nDQ3V7Pg3Ultbi4kTJ+K7777Dvn37UFFRgaysLPTp0wfHjx9v9f3r6+s1mYtciELUgrKyMsXd3V35\n6KOPmvx6ZWWl4uXlpbz11luKoijKQw89pLzwwguNb//yyy8Vf39/RVEUZfbs2UqHDh2Url27Ku7u\n7sr69euVvLw8xWQyKVu3blX8/PwUX19fZcOGDY3vb+/xmrN161Zl4MCBiqenpzJt2jSlsLBQURRF\nGTBgQOP79+jRQ6mtrW3yfjea95133lH69u2r9OnTR/nb3/7W+D4Wi0VZvXq1EhQUpPTu3Vt54IEH\nlIsXLzY717Zt2xRvb2+lqqqqxY97v379lAMHDiiKoijLly9XZs6cqcyePVvp2bOnsn37dqWkpESZ\nN2+e4ufnp/Tq1UuZPn26oiiKsmPHDmXs2LFNjmUymZRz5841+bhWVVUpN910k9KhQwfF3d1d6dGj\nh1JUVNTiPKQvvFKnFmVmZqKmpgb3339/k1/v3r077r33XnzxxRcAGq5sTSZTs8d477330LdvX3z+\n+eeoqKjAc8891/g2s9mMf//739i/fz/Wrl2LAwcOtOt4VgcPHsSyZcvw0UcfoaioCP369cODDz4I\nADh37lzj+5eXl8PNzc3m4x89ehRnz57FgQMH8NJLLyE3NxcAkJycjLS0NBw+fBhFRUXo1asXnnji\niWbnz8jIwD333INu3bo1+3brn/9aaWlpmDVrFsrKyhAfH485c+agpqYGZ86cwX/+8x8sWrSoxWNd\nf1yTyYRu3bohPT0dfn5+qKioQHl5OXx8fGw6Bjk/LnVqUXFxMfr06YMOHX7/18THx6fxOWAAbXq6\nYvny5ejatSvCw8ORmJiIlJSUdh3P6oMPPsD8+fMRGRmJzp07Y/Xq1cjKysL58+fbfEzrvF26dMGt\nt96KiIgInD59GgDw+uuvY+XKlfDz84ObmxuWL1+Ojz/+uNkXVi9evAhfX1+7zjtmzJjG5/4vXbqE\n9PR0vP766/Dw8ECnTp0wbtw4m49l/bi25+NLzo1LnVrUp08fFBcXN7ucioqK0KdPn3Yd/9oX6vr2\n7YvCwsJ2Hc/KenVu1b17d/Tu3RsXLlxo13GvvZrt1q0bKisrAQA//vgjZsyYgV69eqFXr14IDQ1F\np06d8Msvv/zuGL1797b7z+nv79/444KCAnh6esLDw6ONfwpydVzq1KLRo0ejS5cu+OSTT5r8emVl\nJdLT0zFx4kQADUuzurq68e0///xzk9/f0lMp1145nz9/Hrfccku7jmfl5+eH/Pz8xp9XVVWhpKSk\n8fitae341+vbty/S09Nx6dKlxn+qq6ubvSKPiYnBvn37mvz57JknICAAFy9ebPbuo9Y+btcey94/\nI+kHlzq1yMPDA8uXL8eTTz6Jffv24erVq8jPz8cDDzyAgIAAzJkzBwAQGRmJPXv24NKlS/j555+x\nadOmJsfx9vbGuXPnfnf8lStX4vLly/j222/x9ttv409/+lO7jmcVFxeHHTt24PTp07hy5QqWLVuG\n22+/HX379rXpz93a8a/3l7/8BcuWLWv8JPXrr7+2eP/7nDlzEBAQgJkzZyI3NxcWiwUlJSVYtWoV\n9u7d2+q5fH19cc8992DBggUoLS3F1atXG+9pj4iIwLfffovTp0+jpqYGSUlJTd5XUZTGp128vb1R\nUlKC8vJym/+cpA9c6nRDixcvxqpVq/Dcc8/Bw8MDt99+O/r164cDBw40vsg4Z84cREREIDAwEHff\nfTcefPDBJleCzz//PFauXIlevXrh5Zdfbvz18ePHY+DAgYiJicHixYsRExPTruNZTZw4EX/9618x\nc+ZM+Pn5IS8vD6mpqTb/mZs7/o2ubJ9++mlMmzYNd911F3r27InRo0e3eHti586dkZGRgeDgYEya\nNAkeHh4YNWoULl68iNtvv/13v7+5F43fe+89uLm5ITg4GN7e3khOTgYADB48GC+++CJiYmIwZMgQ\njBs3rsn7Xnus4OBgxMXFYcCAAfD09Gz2qp70yaTwFRNysPz8fAwYMAB1dXXNvghLRG2nyf9Rq1ev\nRlhYGIYOHYr4+HhcuXJFi9MQEdF1VF/q+fn52LZtG7Kzs/H111+jvr7eroe+ZAx8oY5IG53UPmDP\nnj3h5uaG6upqdOzYEdXV1TbfdUDGEBgYyC93J9KI6kvd09MTzz77LPr27YuuXbti8uTJjS+AAbxC\nIyJqK1teAlX96Zdz585h06ZNyM/PR2FhISorK/HBBx/8bjC9/rN8+XLxGTi//BycX3//6Hl2RbH9\nfhbVl/rJkycxZswY9O7dG506dcL999+PzMxMtU9DRETNUH2pBwcH49ixY7h8+TIURUFGRsYNM6dE\nRKQe1Zd6REQE5s6dixEjRuDWW28FADz22GNqn0ZMdHS09AjtwvllcX45ep7dHg7/4iMtvwEBEZGr\nsnV38sv5iIhcCJc6EZEL4VInInIhXOpERC6ES52IyIVwqRMRuRAudSIiF8KlTkTkQrjUiYhcCJe6\nwVgsAL+gV47FIj2BsRnh48+lbjBPPgmEh0tPYVwBAcCaNdJTGFNeHtC5M1BXJz2JtrjUDcRiAf7n\nfwBvb+lJjCknB7h4EQgKkp7EmF57reHfnVT/1kDOhUvdQHbvbrhS4VKXsX59w0J3c5OexHjKy4Ht\n24GOHaUn0R6XuoGsWwdMnSo9hTHl5wP79gGBgdKTGNO2bcDEiYARvpsml7pBZGYChYXAbbdJT2JM\nL78MPPKI6z/0d0a1tcArrwCLFklP4hhc6gaxbh3w7LPGePjpbIqLgfffB556SnoSY/rwQyAkBIiK\nkp7EMbjUDeB//xfIygLmzZOexJheew24/37Az096EuOxWBpey1iyRHoSx+GDQQPYsAF44gmgWzfp\nSYynuhp49VXg0CHpSYxpz56GmwNiYoArV6SncQwudRdXWAjs3Al8/730JMb09tvA6NFAcLD0JMa0\nbl3DVboRXiC14lJ3ccnJwOzZQO/e0pMYT10dsHEj8N570pMYU1YWUFAAzJolPYljcam7sPJy4M03\ngZMnpScxpp07AV9fYMwY6UmMaf36hpsDjHbHEV8odWFvvAFMnsx7oyUoCrB2LfDf/y09iTHl5gJf\nfQUkJkpP4ngG+xxmHFeuAJs2NXwVKTnewYPA5cvAlCnSkxjThg3AggVA9+7Skzie6lfqubm5iIqK\navzHw8MDycnJap+GWvHhhw3hrshI6UmMad06YPFioAMfCztcURHw8ccNd3wZkepX6kOGDMGpU6cA\nABaLBbfccgtmzJih9mnoBqz35m7ZIj2JMeXkAN98A8THS09iTMnJQEIC4OUlPYkMTZ9+ycjIQFBQ\nEAICApr8elJSUuOPo6OjER0dreUYhrN7N9C1K3DnndKTGNP69cDChUCXLtKTGE95ObB1K3DihPQk\n7Wc2m2E2m+1+P02XempqKuKbuVy5dqmT+ox4b66zsIa7rJlXcqxt24BJk4ABA6Qnab/rL3hXrFhh\n0/tp9oxfbW0tdu3ahVlGu0lUmDXcNXOm9CTGZA13eXhIT2I81nCXkZIAzdHsSn3v3r0YPnw4vIz6\nxJYQa7jLaPfmOgNruOubb6QnMSZruGvYMOlJZGn2v35KSgri4uK0Ojw1wxru+vBD6UmMieEuOdab\nAzZtkp5EniZLvaqqChkZGdi2bZsWh6cWMNwlh+EuWdeGu4xOk6XevXt3FBcXa3FoagHDXbIY7pLF\nmwP+H595dREMd8lhuEuWUcNdLeFSdwEMd8liuEuWUcNdLeEXMbsAhrvkMNwly8jhrpbwc5vOMdwl\ni+EuWUYOd7WES13nGO6SxXCXHGu46+xZ6UmcC5e6jjHcJYvhLllGD3e1hEtdxxjuksVwl5zy8obO\ny/Hj0pM4Hz5o1DHemyvHGu567DHpSYzJlcJdauOVuk4x3CWL4S451nBXWpr0JM6JS12nGO6Sw3CX\nLIa7bowrQYcY7pLFcJcchrtax6WuQwx3yWG4SxbDXa3jUtcZhrtkMdwlizcHtI5LXWcY7pLDcJcs\nhrtsw6WuIwx3yWK4SxbDXbbhfeo6wnCXHIa7ZDHcZTt+ztMJhrtkMdwli+Eu23Gp6wTDXbIY7pLD\ncJd9uNR1gOEuWQx3yWK4yz5c6jrAcJcshrvkMNxlPz6Y1AHemyuH4S5ZDHfZj1fqTo7hLlkMd8lh\nuKttNLlSLy0tRWxsLEJCQhAaGopjx45pcRpDYLhLjjXc9dRT0pMYE8NdbaPJqnj66adx77334uOP\nP0ZdXR2qqqq0OI3LY7hLFsNdchjuajvVl3pZWRmOHDmCd955p+EEnTrBg49d24ThLjkMd8liuKvt\nVF/qeXl58PLyQmJiIk6fPo3hw4dj8+bN6HbNZkpKSmr8cXR0NKKjo9UeQ/cY7pLFcJcs3hwAmM1m\nmM1mu9/PpCiKouYgJ0+exOjRo5GZmYmRI0di4cKF6NmzJ1566aWGE5pMUPmULmnp0oarxeRkdY+b\nktLwwlNKirrHdSV1dcCQIQ3hLrU7L9OnA/PmNfybmpeV1fA1Ad9/r+5rSTU1wB/+0PBvPbJ1d6r+\nQqm/vz/8/f0xcuRIAEBsbCyys7PVPo1Ls4a7Fi2SnsSYGO6SxXBX+6i+1H18fBAQEICzv31Nb0ZG\nBsLCwtQ+jUtjuEsOw12yGO5qP00+F27ZsgUJCQmora1FUFAQduzYocVpXBLDXbIY7pLFcFf7abLU\nIyIicOLECS0O7fIY7pLFcJcchrvUwWetnAjDXbIY7pLFcJc6uNSdCMNdshjuksNwl3r4INOJ8N5c\nOfn5QHo6w11SGO5SD6/UnURmJnDhAsNdUhjuksNwl7q41J3EunXAc8/x3lwJ1nDXN99IT2JMDHep\niyvECTDcJYvhLjkMd6mPS90JMNwlh+EuWQx3qY9LXRjDXbIY7pLFmwPUx6UuLDkZmD0b6N1behLj\nqasDNm5sCHeR42VlAQUFwKxZ0pO4Fi51QdZw18mT0pMYE8Ndshju0gbvUxfEcJcchrtkMdylHX6O\nFMJwlyyGu2Qx3KUdLnUhDHfJYrhLDsNd2uJSF8BwlyyGu2Qx3KUtLnUBDHfJYrhLDsNd2uODTwG8\nN1cOw12yGO7SHq/UHYzhLlkMd8lhuMsxuNQdjOEuOQx3yWK4yzG4WhyI4S5ZDHfJYbjLcbjUHYjh\nLjkMd8liuMtxuNQdhOEuWQx3yeLNAY7Dpe4gDHfJYbhLFsNdjsWl7gAMd8liuEsWw12OpcmHOTAw\nED179kTHjh3h5uaG4wb/SgOGu+RYw11JSdKTGJM13MVHSY6jyVI3mUwwm83w9PTU4vC6wnCXLIa7\nZDHc5XiaPSBSFEWrQ+sKw12yGO6Sw3CXDM2u1GNiYtCxY0f8+c9/xqOPPtrk7UnXPBaOjo5GdHS0\nFmOIY7hLFsNdshjuah+z2Qyz2Wz3+2my1I8ePQpfX1/8+uuvmDRpEoKDgzFu3LjGtycZ5AlOhrtk\nMdwlxxruOnFCehL9uv6Cd8WKFTa9nyYPSn19fQEAXl5emDFjhmFfKOW9uXIY7pJlDXf17y89ifGo\nvtSrq6tRUVEBAKiqqsL+/fsxdOhQtU/j9BjuksVwlxxruGvxYulJjEn1p19++eUXzJgxAwBQV1eH\nhIQE3HXXXWqfxukx3CWH4S5ZDHfJUn3l9O/fHzk5OWofVlcY7pLFcJcchrvk8TpSAwx3yWG4SxbD\nXfJafU79hx9+sOnXqIE13PXEE9KTGBPDXbJ4c4C8Vpf6zGZe6ZvFMk+LGO6SYw13LVkiPYkxMdzl\nHFp8+uW7777DmTNnUFZWhp07d0JRFJhMJpSXl6OmpsaRM+oGw12yGO6SxXCXc2jxw3/27Fns2rUL\nZWVl2LVrV+Ov9+jRA9u2bXPIcHrDcJcchrtkMdzlPFpc6vfddx/uu+8+ZGVlYfTo0Y6cSZcY7pLF\ncJcshrucR6sPlLZu3YqtW7c2/tz02ysgb731lnZT6RDDXbIY7pLDcJdzaXWpT5kypXGRX758GZ9+\n+in8eANwEwx3yWK4SxbDXc6l1aUeGxvb5Ofx8fG44447NBtIjxjuksVwlxyGu5yP3Q9Wz549i19/\n/VWLWXSL9+bKYbhLFsNdzqfVK3V3d/fGp19MJhO8vb2xdu1azQfTC4a7ZDHcJcca7kpLk56ErtXq\nUq+srHTEHLrFcJcchrtkMdzlnGxaRZ999hkOHz4Mk8mE8ePHY+rUqVrPpQsMd8liuEsOw13Oq9Wl\nvnTpUpw4cQIJCQlQFAXJycnIzMzE6tWrHTGfU2O4Sw7DXbL27Gl4YZrhLufT6lLfvXs3cnJy0LFj\nRwDAvHnzEBkZafilbg13ff+99CTGxHCXLN4c4LxavfvFZDKhtLS08eelpaWNL5waGcNdchjukmUN\nd113tzM5iRav1BcsWID4+HgsW7YMw4YNw4QJE6AoCg4dOoQ1a9Y4ckanw3CXLIa7ZDHc5dxa/M8y\nePBgLF68GIWFhYiJiUG/fv0QGRmJtWvXwsfHx5EzOh2Gu+Qw3CWL4S7n1+LTLwsXLkRWVhYOHTqE\nQYMGYefOnVi8eDHeeOMNnDVw5MEa7uI31ZXBcJcshrucX6vPqQcGBmLp0qXIyclBamoqPv30U4SE\nhDhiNqfEcJcshrvkWMNd/K5ezq3V/zXq6uqQlpaG+Ph43H333QgODsbOnTsdMZvTsd6byxfoZDDc\nJYvhLn1o8Tn1/fv3IzU1Fbt378Ztt92GuLg4bN26Fe7u7o6cz6kw3CWL4S45DHfpR4tLfc2aNYiL\ni8OGDRvg6enpyJmcFu/NlWMNd732mvQkxsRwl360uNQPHjzYrgPX19djxIgR8Pf3b/Lt8PSK4S5Z\nr7zCcJcUhrv0RbM7TTdv3ozQ0FBUVFRodQqHYrhLTklJwy10DHfJYLhLXzS5h+Cnn37Cnj178Mgj\nj0BRFC1O4VDWcNe8edKTGNOrrzLcJYU3B+iPJtedzzzzDNavX4/y8vJm3550zVeOREdHIzo6Wosx\nVMNwlxyGu2Qx3CXHbDbDbDbb/X6qL/XPP/8cN998M6KiolocKElHXw7IcJcshrtk8eYAOddf8K5Y\nscKm91N9qWdmZiItLQ179uxBTU0NysvLMXfuXLz77rtqn8ohGO6SYw138UvSZTDcpU+qP6e+atUq\nFBQUIC8vD6mpqbjzzjt1u9Ct9+YuWiQ9iTEx3CWL4S590vyLrfWc6WW4S4413MUX6GRYw12JidKT\nkL00/Rw8fvx4jB8/XstTaMYa7tq9W3oSY7KGu/7rv6QnMSaGu/SLD6xawHCXLIa75BQVAZ98Ahg4\nxqprXOrNsN6bu2WL9CTGxHCXLGu4q08f6UmoLbjUm8FwlyyGu+Qw3KV/fHDbDN6bK8ca7nrsMelJ\njInhLv3jlfp1GO6SxXCXHIa7XAOX+nUY7pLDcJcshrtcA1fXNazhrg8/lJ7EmBjukmO9OWDTJulJ\nqL241K/BcJcchrtkMdzlOrjUf8NwlyyGu2Tx5gDXwaX+G4a75DDcJYvhLtfCpY7/vzf3X/+SnsSY\nGO6SxXCXa+F96mC4SxLDXbIY7nI9hv/czHCXLIa7ZDHc5XoMv9QZ7pLFcJcchrtck6GXOsNdshju\nksVwl2sy9FJnuEsWw11yGO5yXYZ+0Mt7c+Uw3CWL4S7XZdgrdYa7ZDHcJYfhLtdm2KXOcJcchrtk\nMdzl2gy50hjuksVwlxyGu1yfIZc6w11yGO6SxXCX6zPcUme4SxbDXbJ4c4DrM9xSZ7hLDsNdshju\nMgbVl3pNTQ3Gjx+PK1euoLa2Fvfddx9Wr16t9mnahOEuWQx3yWK4yxhU/89700034csvv0S3bt1Q\nV1eHsWPH4quvvsLYsWPVPpXdGO6SYw13LV8uPYkxWcNdfJTk+jT5nN3tt1cga2trUV9fD09PTy1O\nYxeGu2Qx3CWL4S7j0GSpWywWDBs2DOfOncPjjz+O0NDQJm9PSkpq/HF0dDSio6O1GKMJhrtkMdwl\nh+EufTKbzTCbzXa/n0lRFEX9cRqUlZVh8uTJWLNmTePiNplM0PCUzbJYGhb6li3AxIkOPbXTSUlp\n+ErClBTHnTMnB5gyBfjhB3Zepk8H5s1r+LejPP88UFnJcF1NDfCHPzT8W49s3Z2aXjd5eHhgypQp\nOHnypJanaRXDXbIY7pJjvTlg0SLpSchRVF/qxcXFKC0tBQBcvnwZX3zxBaKiotQ+jV14b64chrtk\nMdxlPKo/p15UVISHHnoIFosFFosFc+bMwUTB5zwY7pLFcJcchruMSfWlPnToUGRnZ6t92DZjuEsO\nw12yGO4yJpdedQx3yWK4Sw7DXcbl0kud4S45DHfJYrjLuFx2qTPcJYvhLlm8OcC4XHapM9wlh+Eu\nWQx3GZtLLnWGu2Qx3CWL4S5jc8kv2ma4S4413LVkifQkxmQNdyUmSk9CUlzucznDXbIY7pLFcBe5\n3FJnuEsWw11yGO4iwMWWuvXeXKOHi6Tk5DR8oVF8vPQkxpScDCQkAH36SE9CklxqqTPcJYvhLjnW\nmwNOnJCehKS51INk3psrh+EuWQx3kZXLXKkz3CWL4S45DHfRtVxmqa9bx3tzpTDcJYvhLrqWS6xA\nhrtkMdwlh+Euup5LLHWGu+Qw3CWL4S66nu6XOsNdshjuksWbA+h6ul/qDHfJYbhLFsNd1BxdL3WG\nu2Qx3CWL4S5qjq7vU2e4Sw7DXbIY7qKW6PZzPMNdshjuksVwF7VEt0ud4S5ZDHfJYbiLbkSXS53h\nLlkMd8liuItuRJdLneEuWQx3yWG4i1qj+oPngoICTJgwAWFhYQgPD0dycrLap+C9uYIY7pLFcBe1\nRvUrdTc3N7zyyiuIjIxEZWUlhg8fjkmTJiEkJESV4zPcJYvhLjkMd5EtVF/qPj4+8PHxAQC4u7sj\nJCQEhYWFqi11hrvkMNwli+EusoWmqzE/Px+nTp3CqFGjmvx6UlJS44+jo6MRHR1t0/EY7pLFcJcc\nhruMx2w2w2w22/1+mi31yspKxMbGYvPmzXB3d2/ytmuXuj0Y7pLDcJcshruM5/oL3hUrVtj0fpos\n9atXr2LmzJmYPXs2pk+frsoxGe6SxXCXLN4cQLZSfakrioL58+cjNDQUCxcuVO24DHfJYbhLFsNd\nZA/Vb2k8evQo3n//fXz55ZeIiopCVFQU0tPT23VM6725ixapNCTZheEuWQx3kT1U/2syduxYWCwW\nVY/JcJcca7hr+XLpSYzJGu7ioySyldN/7me4SxbDXbIY7iJ7Of1SZ7hLFsNdchjuorZw6qXOcJcs\nhrtkMdxFbeHUS53hLlkMd8lhuIvayqkfVPPeXDkMd8liuIvaymmv1BnuksVwlxyGu6g9nHapM9wl\nh+EuWQx3UXs45cpkuEsWw11yrDcHbN4sPQnplVMudYa75DDcJcsa7po4UXoS0iunW+oMd8liuEsW\nbw6g9nK6pc5wlxyGu2Qx3EVqcKqlbr0391//kp7EmBjuksVwF6nBqe5TZ7hLjjXctWSJ9CTGZA13\nJSZKT0J65zTXBAx3yWK4SxbDXaQWp1nqDHfJYrhLDsNdpCanWOoMd8liuEsWw12kJqdY6gx3yWK4\nSw7DXaQ2p3iwzXtz5TDcJYvhLlKb+JU6w12yGO6Sw3AXaUF8qTPcJYfhLlkMd5EWRFcpw12yGO6S\nw3AXaUV0qTPcJYfhLlkMd5FWxF4otYa7nnhCaoK2MZvN0iO0y5kzZgD6DXfp/eNfXGwGoN+bA/T8\n8T982Cw9gkNostQffvhheHt7Y+jQoS3+Hr2Gu/T8lxoAvvvODEVpCHfpMQmg949/cbEZubn6DXfp\n+ePPpd4OiYmJSE9Pb/Ht1ntzFy3S4uzUmoIChrskffopbw4g7Wiy1MeNG4devXq1+PatWxnukqIo\nwHff6fMq3RXU1jZ8/BnuIq2YFEVRtDhwfn4+pk6diq+//rrpCfX2JCIRkZOwZV07/AGgRp9DiIgI\nTpIJICIidXCpExG5EE2WelxcHMaMGYOzZ88iICAAO3bs0OI0RER0HU2WekpKCgoLC3HlyhUUFBQg\n8beX+tPT0xEcHIxBgwZh7dq1WpxaU7bcf++sCgoKMGHCBISFhSE8PBzJycnSI9mlpqYGo0aNQmRk\nJEJDQ/H8889Lj9Qm9fX1iIqKwtSpU6VHsVtgYCBuvfVWREVF4bbbbpMexy6lpaWIjY1FSEgIQkND\ncezYMemRbJabm4uoqKjGfzw8PG78/6/iIHV1dUpQUJCSl5en1NbWKhEREcqZM2ccdXpVHD58WMnO\nzlbCw8OlR7FbUVGRcurUKUVRFKWiokIZPHiw7j7+VVVViqIoytWrV5VRo0YpR44cEZ7Ifhs3blTi\n4+OVqVOnSo9it8DAQKWkpER6jDaZO3eusn37dkVRGv7+lJaWCk/UNvX19YqPj49y/vz5Fn+Pw55T\nP378OAaHKXu/AAAEdUlEQVQOHIjAwEC4ubnhwQcfxGeffeao06uitfvvnZmPjw8if/tege7u7ggJ\nCUFhYaHwVPbp9lskqLa2FvX19fD09BSeyD4//fQT9uzZg0ceeUS3d4Hpce6ysjIcOXIEDz/8MACg\nU6dO8NBpazojIwNBQUEICAho8fc4bKlfuHChySD+/v64cOGCo05P18jPz8epU6cwatQo6VHsYrFY\nEBkZCW9vb0yYMAGhoaHSI9nlmWeewfr169FBp98I1mQyISYmBiNGjMC2bdukx7FZXl4evLy8kJiY\niGHDhuHRRx9FdXW19FhtkpqaivhWvu+kw/528YuOnENlZSViY2OxefNmuLu7S49jlw4dOiAnJwc/\n/fQTDh8+rKsOyeeff46bb74ZUVFRurzaBYCjR4/i1KlT2Lt3L1599VUcOXJEeiSb1NXVITs7GwsW\nLEB2dja6d++ONWvWSI9lt9raWuzatQuzZs264e9z2FK/5ZZbUFBQ0PjzgoIC+Pv7O+r0BODq1auY\nOXMmZs+ejenTp0uP02YeHh6YMmUKTp48KT2KzTIzM5GWlob+/fsjLi4OBw8exNy5c6XHsouvry8A\nwMvLCzNmzMDx48eFJ7KNv78//P39MXLkSABAbGwssrOzhaey3969ezF8+HB4eXnd8Pc5bKmPGDEC\n33//PfLz81FbW4t//vOfmDZtmqNOb3iKomD+/PkIDQ3FwoULpcexW3FxMUpLSwEAly9fxhdffIGo\nqCjhqWy3atUqFBQUIC8vD6mpqbjzzjvx7rvvSo9ls+rqalRUVAAAqqqqsH//ft3cBebj44OAgACc\nPXsWQMPz0mFhYcJT2S8lJQVxcXGt/j6HZQI6deqEv//975g8eTLq6+sxf/58hISEOOr0qoiLi8Oh\nQ4dQUlKCgIAAvPTSS423azq7o0eP4v3332+8JQ0AVq9ejbvvvlt4MtsUFRXhoYcegsVigcViwZw5\nczBRx99hQm9PR/7yyy+YMWMGgIanMxISEnDXXXcJT2W7LVu2ICEhAbW1tQgKCtLd185UVVUhIyPD\nptcyNAt6ERGR4+nzZXgiImoWlzoRkQvhUiciciFc6kRELoRLnQwpPz8fwcHBSExMxJAhQ5CQkID9\n+/fjjjvuwODBg3HixAkcOnSoMaI0bNgwVFZWSo9N1Cre/UKGlJ+fj0GDBiEnJwehoaEYOXIkIiIi\nsH37dqSlpeGtt96CxWLB0qVLMWbMGFRXV6NLly7o2LGj9OhEN8QrdTKs/v37IywsDCaTCWFhYYiJ\niQEAhIeH48cff8TYsWOxaNEibNmyBZcuXeJCJ13gUifD6tKlS+OPO3TogM6dOzf+uK6uDkuWLMGb\nb76Jy5cv44477kBubq7UqEQ2c/g3nibSix9++AHh4eEIDw/HiRMnkJubiyFDhkiPRXRDvFInw7r+\nS/Wv//mmTZswdOhQREREoHPnzrjnnnscOR5Rm/CFUiIiF8IrdSIiF8KlTkTkQrjUiYhcCJc6EZEL\n4VInInIhXOpERC7k/wD4xTcXWswNTwAAAABJRU5ErkJggg==\n"
      }
     ], 
     "prompt_number": 6
    }, 
    {
     "cell_type": "markdown", 
     "source": [
      "<h3>Example 16.6, Page Number: 542<h3>"
     ]
    }, 
    {
     "cell_type": "code", 
     "collapsed": false, 
     "input": [
      "", 
      "R1=2.2*10**3;", 
      "R2=4.7*10**3;", 
      "C_ext=0.022*10**-6;", 
      "f_r=1.44/((R1+2*R2)*C_ext);", 
      "print('frequency of the 555 timer in hertz = %f'%f_r)", 
      "duty_cycle=((R1+R2)/(R1+2*R2))*100;", 
      "print('duty cycle in percentage = %f'%duty_cycle)"
     ], 
     "language": "python", 
     "outputs": [
      {
       "output_type": "stream", 
       "stream": "stdout", 
       "text": [
        "frequency of the 555 timer in hertz = 5642.633229", 
        "duty cycle in percentage = 59.482759"
       ]
      }
     ], 
     "prompt_number": 7
    }
   ]
  }
 ]
}