1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
{
"metadata": {
"name": "Chapter_3"
},
"nbformat": 2,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"source": [
"<h1>Chapter 3: Special-purpose Diodes<h1>"
]
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 3.1, Page Number:88<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"",
"Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].",
"For more information, type 'help(pylab)'."
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"delVZ=50*10**-3; #voltage in volts, from graph",
"delIZ=5*10**-3; #current in amperes, from rgraph",
"",
"#calculation",
"ZZ=delVZ/delIZ; #zener impedence",
"",
"# result",
"print \"zener impedance = %d ohm \" %ZZ"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"zener impedance = 10 ohm "
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 3.2, Page Number:89<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"I_ZT=37*10**-3; #IN AMPERES",
"V_ZT=6.80; #IN VOLTS",
"Z_ZT=3.50; #IN OHMS",
"I_Z=50*10**-3; #IN AMPERES",
"",
"#calculation",
"DEL_I_Z=I_Z-I_ZT; #change current",
"DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage",
"V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals",
"print \"voltage across zener terminals when current is 50 mA = %.3f volts\" %V_Z",
"I_Z=25*10**-3; #IN AMPERES",
"DEL_I_Z=I_Z-I_ZT; #change current",
"DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage",
"V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals",
"",
"#result",
"print \"voltage across zener terminals when current is 25 mA = %.3f volts\" %V_Z"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"voltage across zener terminals when current is 50 mA = 6.845 volts",
"voltage across zener terminals when current is 25 mA = 6.758 volts"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 3.3, Page Number:90<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"V_Z=8.2; #8.2 volt zener diode",
"TC=0.0005; #Temperature coefficient (per degree celsius)",
"T1=60; #Temperature 1 in celsius",
"T2=25; #Temperature 2 in celsius",
"",
"#calculation",
"DEL_T=T1-T2; #change in temp",
"del_V_Z=V_Z*TC*DEL_T; #change in voltage",
"voltage=V_Z+del_V_Z; #zener voltage",
"",
"#result",
"print \"zener voltage at 60 degree celsius = %.3f volt\" %voltage"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"zener voltage at 60 degree celsius = 8.343 volt"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 3.4, Page Number:90<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"P_D_max=400*10**-3; #power in watts",
"df=3.2*10**-3 #derating factor in watts per celsius",
"del_T=(90-50); #in celsius, temperature difference",
"",
"#calculation",
"P_D_deru=P_D_max-df*del_T; #power dissipated",
"P_D_der=P_D_deru*1000;",
"",
"#result",
"print \"maximum power dissipated at 90 degree celsius = %d mW\" %P_D_der"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"maximum power dissipated at 90 degree celsius = 272 mW"
]
}
],
"prompt_number": 5
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 3.5, Page Number: 92<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"V_Z=5.1;",
"I_ZT=49*10**-3;",
"I_ZK=1*10**-3;",
"Z_Z=7;",
"R=100;",
"P_D_max=1;",
"",
"#calculation",
"V_out=V_Z-(I_ZT-I_ZK)*Z_Z; #output voltage at I_ZK",
"V_IN_min=I_ZK*R+V_out; #input voltage",
"I_ZM=P_D_max/V_Z; #current",
"V_out=V_Z+(I_ZM-I_ZT)*Z_Z; #output voltage at I_ZM",
"V_IN_max=I_ZM*R+V_out; #max input voltage",
"",
"#result",
"print \"maximum input voltage regulated by zener diode = %.3f volts\" %V_IN_max",
"print \"minimum input voltage regulated by zener diode = %.3f volts\" %V_IN_min"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"maximum input voltage regulated by zener diode = 25.737 volts",
"minimum input voltage regulated by zener diode = 4.864 volts"
]
}
],
"prompt_number": 6
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 3.6, Page Number: 93<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"V_Z=12.0; #voltage in volt",
"V_IN=24.0; #ip voltage in volt",
"I_ZK=0.001; #current in ampere",
"I_ZM=0.050; #current in ampere ",
"Z_Z=0; #impedence",
"R=470; #resistance in ohm",
"",
"#calculation",
"#when I_L=0, I_Z is max and is equal to the total circuit current I_T",
"I_T=(V_IN-V_Z)/R; #current",
"I_Z_max=I_T; #max current",
"if I_Z_max<I_ZM : # condition for min currert ",
" I_L_min=0;",
"",
"I_L_max=I_T-I_ZK; #max current",
"R_L_min=V_Z/I_L_max; #min resistance",
"",
"#result",
"print \"minimum value of load resistance = %.2f ohm\" %R_L_min",
"print \"minimum curent = %.3f ampere\" %I_L_min",
"print \"maximum curent = %.3f ampere\" %I_L_max"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"minimum value of load resistance = 489.16 ohm",
"minimum curent = 0.000 ampere",
"maximum curent = 0.025 ampere"
]
}
],
"prompt_number": 7
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 3.7, Page Number: 94<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"# variable declaration",
"V_IN=24.0; #voltage in volt",
"V_Z=15.0; #voltage in volt",
"I_ZK=0.25*10**-3; #current in ampere",
"I_ZT=17*10**-3; #current in ampere",
"Z_ZT=14.0; #impedence",
"P_D_max=1.0; #max power dissipation",
"",
"#calculation",
"V_out_1=V_Z-(I_ZT-I_ZK)*Z_ZT; #output voltage at I_ZK",
"print \"output voltage at I_ZK = %.2f volt\" %V_out_1",
"I_ZM=P_D_max/V_Z;",
"",
"V_out_2=V_Z+(I_ZM-I_ZT)*Z_ZT; #output voltage at I_ZM",
"print \"output voltage a I_ZM = %.2f volt\" %V_out_2",
"R=(V_IN-V_out_2)/I_ZM; #resistance",
"print \"value of R for maximum zener current, no load = %.2f ohm\" %R",
"print \"closest practical value is 130 ohms\"",
"R=130.0;",
"#for minimum load resistance(max load current) zener current is minimum (I_ZK)",
"I_T=(V_IN-V_out_1)/R; #current",
"I_L=I_T-I_ZK; #current",
"R_L_min=V_out_1/I_L; #minimum load resistance",
"",
"#result",
"print \"minimum load resistance = %.2f ohm\" %R_L_min"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"output voltage at I_ZK = 14.77 volt",
"output voltage a I_ZM = 15.70 volt",
"value of R for maximum zener current, no load = 124.57 ohm",
"closest practical value is 130 ohms",
"minimum load resistance = 208.60 ohm"
]
}
],
"prompt_number": 8
},
{
"cell_type": "markdown",
"source": [
"<h3>Example 3.8, Page Number: 96<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"",
"#variable declaration",
"V_p_in=10.0; #Peak input voltage",
"V_th=0.7; #forward biased zener",
"V_Z1=5.1;",
"V_Z2=3.3;",
"",
"V_p_in=20.0;",
"V_Z1=6.2;",
"V_Z2=15.0;",
"",
"#result",
"print('max voltage = %.1f V'%(V_Z1+V_th))",
"print('min voltage = %.1f V'%(-(V_Z2+V_th)))"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"max voltage = 6.9 V",
"min voltage = -15.7 V"
]
}
],
"prompt_number": 9
}
]
}
]
}
|