1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter6 Oscillators"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.3.1,Pg.no.199"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.The minimum value of beta is 44.54\n",
"2.The value of resistor R= 21.6 Kohm\n",
"3.The value of capacitor is 4494.19 pF\n"
]
}
],
"source": [
"import math\n",
"from math import pi,sqrt\n",
"f=400.0\n",
"rc= 10.0\n",
"Rc= 40.0 \n",
"#Minimum value of beta is given by Bomin= 23+(4*Ro /R)+(29*R/Ro) \n",
"#For minimum beta Ro/R=2.7, we represent Ro/R=b\n",
"b=2.7\n",
"Bomin=23+(4*b)+(29*1/b)\n",
"Bomin=round(Bomin,2)\n",
"print '1.The minimum value of beta is',Bomin\n",
"#Determination of R and C components\n",
"#R0 is given by ( rc*Rc) /( rc+Rc)\n",
"R0=(rc*Rc)/(rc+Rc)\n",
"R=2.7* R0\n",
"print '2.The value of resistor R=',R,'Kohm'\n",
"c=1/(2*pi*f*R*sqrt(6+(4*b)))*10**9\n",
"c=round(c,2)\n",
"print '3.The value of capacitor is',c,'pF'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.3.2,Pg.no.200"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The value of capacitor is 767.44 pF\n"
]
}
],
"source": [
"import math\n",
"from math import pi,sqrt\n",
"#given\n",
"f=800.0\n",
"R0=18.0\n",
"#calculations\n",
"R=100.0\n",
"c=1/(2*pi*f*R*sqrt(6+(4*R0/R)))*10**9 #Capacitance in pF\n",
"c=round(c,2)\n",
"print 'The value of capacitor is',c,'pF'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.3.3,Pg.no.201"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The value of capacitor is 614.0 pF\n",
"1.The required open−circuit voltage gain is 30.16\n",
"2.The value of gm is 6.03 mS\n"
]
}
],
"source": [
"import math\n",
"f=1000.0\n",
"Ro=5.0\n",
"R=100.0\n",
"c=1/(2*pi*f*R*sqrt(6+(4*R0/R)))*10**9\n",
"c=round(c,1)\n",
"print 'The value of capacitor is',c,'pF'\n",
"#The required open−circuit voltage gain is\n",
"Ao= 29+23*(Ro/R)+4*(Ro/R)**2\n",
"Ao=round(Ao,2)\n",
"print'1.The required open−circuit voltage gain is',Ao\n",
"gm=Ao/Ro\n",
"gm=round(gm,2)\n",
"print '2.The value of gm is',gm,'mS'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.4.1,Pg.no.205"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.The value of capacitor is 75.0 pF\n",
"2.The frequency of oscillation is 918881.49 Hz\n",
"3.The dynamic impedence of the tuned circuit 461880.22 ohm\n",
"4.The coil series resistance is 11.55 ohm\n",
"5.The value of gm is 1.15470052676e-05\n",
"6.The input resistance is 8660254.12 ohm\n",
"7.The frequency of oscillation is 918881.49 Hz\n"
]
}
],
"source": [
"import math\n",
"from math import pi,sqrt\n",
"L=400*10**-6 #inductsnce in H\n",
"c1= 100.0 #capaitance in pF\n",
"c2= 300.0 #in pF\n",
"Q=200.0\n",
"Ro= 5*10**3\n",
"Bo=100.0 #beta value\n",
"#The tuning capacitance is\n",
"Cs=(c1*c2/(c1+c2))\n",
"Cs=round(Cs,2)\n",
"print '1.The value of capacitor is',Cs,'pF'\n",
"#the frequency of oscillation is obtained as\n",
"f=1/(2*pi*sqrt(L*Cs*10**-12))\n",
"f=round(f,2)\n",
"print '2.The frequency of oscillation is',f,'Hz'\n",
"#The dynamic impedence of the tuned circuit\n",
"wo= 2*pi*f\n",
"Rd=Q/(wo*Cs*10**-12)\n",
"Rd=round(Rd,2)\n",
"print '3.The dynamic impedence of the tuned circuit',Rd,'ohm'\n",
"#The coil series resistance is\n",
"r=wo*L/Q\n",
"r=round(r,2)\n",
"print '4.The coil series resistance is',r,'ohm'\n",
"#The capacitor raio c= c1/c2=1/3, and therefore 1− c2/B0∗c1 = 1\n",
"#The starting value of gm is therefore given by\n",
"c= c1/c2\n",
"gm=(1/Ro)*c +(c+3+2)*(1/Rd)\n",
"print '5.The value of gm is',gm\n",
"#Assuming the input resistance is that of the transistor alone\n",
"R1=Bo/gm\n",
"R1=round(R1,2)\n",
"print '6.The input resistance is',R1,'ohm'\n",
"wo2=1/((L*Cs*10**-12)+(1/R1*Ro*c1*c2*10**-12*10**-12))\n",
"wo=sqrt(wo2)\n",
"f=wo/(2*pi)\n",
"f=round(f,2)\n",
"print '7.The frequency of oscillation is',f,'Hz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.6.1,Pg.no.211"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The value of capacitor is 5.16 pF\n"
]
}
],
"source": [
"import math\n",
"Co=20.0 #in pF\n",
"Vd=-7 #reverse bias voltage in volt\n",
"#constant pottential of junction is 0.5\n",
"a=0.5 #for abrupt junction\n",
"Cd=Co/(1-(Vd/0.5))**a\n",
"Cd=round(Cd,2)\n",
"print 'The value of capacitor is',Cd,'pF'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.6.2,Pg.no.212"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.The total tuning capacitor is 9.38 pF\n",
"2.The frequency of oscillation is 5196593.1 Hz\n",
"3.The total tuning capacitor is 3.99 pF\n",
"4.The frequency of oscillation is 7967713.03 Hz\n"
]
}
],
"source": [
"from math import pi,sqrt\n",
"#given\n",
"C1=300.0\n",
"C2=300.0\n",
"Cc=20.0\n",
"L=100.0\n",
"#calculations\n",
"# A) With zero applied bias , the total tuning capacitor is \n",
"Vd1=0\n",
"a=0.5\n",
"Co=20.0\n",
"Cd1=Co/(1-(Vd1/0.5))**a\n",
"Cs1=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd1))\n",
"Cs1=round(Cs1,2)\n",
"print '1.The total tuning capacitor is',Cs1,'pF'\n",
"#The frequency of oscillation is\n",
"f=1/(2*pi*sqrt(L*10**-6*Cs1*10**-12))\n",
"f=round(f,2)\n",
"print '2.The frequency of oscillation is',f,'Hz'\n",
"Vd2=-7\n",
"Cd2=Co/(1-(Vd2/0.5))**a\n",
"Cs2=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd2))\n",
"Cs2=round(Cs2,2)\n",
"print '3.The total tuning capacitor is',Cs2,'pF'\n",
"f=1/(2*pi*sqrt(L*10**-6*Cs2*10**-12))\n",
"f=round(f,2)\n",
"print '4.The frequency of oscillation is',f,'Hz'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|