1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter20 Fibre Optic Communication"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.2.1,Pg.no.753"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The numerical aperture is 0.35\n",
"The acceptance angle is 0.36\n"
]
}
],
"source": [
"import math\n",
"from math import sqrt\n",
"n1=1.55 #RI of glass\n",
"n2=1.51 #RI of clad\n",
"#NA of the fibe is given as\n",
"NA=n1*sqrt(2*(n1-n2)/n1)\n",
"NA=round(NA,2)\n",
"print 'The numerical aperture is',NA\n",
"#Acceptance angle is given as\n",
"acc_angle=math.asin(NA)\n",
"acc_angle=round(acc_angle,2)\n",
"print 'The acceptance angle is',acc_angle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.2.2,Pg.no.761"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The V number is 69.12\n",
"the approximate no . of modes are 2388.8\n"
]
}
],
"source": [
"import math\n",
"from math import pi\n",
"d=50*10**-6\n",
"wav=0.8*10**-6\n",
"NA=0.352 \n",
"#Determination of V number\n",
"V=(pi)*d*NA/wav\n",
"V=round(V,2)\n",
"print 'The V number is',V\n",
"#Determination of approximate number of modes\n",
"N=(V**2)/2\n",
"N=round(N,1)\n",
"print 'the approximate no . of modes are',N"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.2.3,Pg.no.762"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The v number is 4.2291\n",
"From the table it is seen that 6 modes have cut off v less than 4.23\n"
]
}
],
"source": [
"import math\n",
"from math import pi\n",
"d=5*10**-6\n",
"wave=1.3*10**-6\n",
"NA=0.35\n",
"#Determination of V number\n",
"V=(pi)*d*NA/wave\n",
"V=round(V,4)\n",
"print 'The v number is',V\n",
"print 'From the table it is seen that 6 modes have cut off v less than 4.23'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.2.4,Pg.no.763"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"No . of modes supported by graded index fiber= 1195\n"
]
}
],
"source": [
"import math\n",
"a=2 #gradding profile index\n",
"V=69.1 #normalized cutoff frequency\n",
"N=2390 #number of modes supported as a step index fiber\n",
"#Determination of no . of modes supported by graded index fiber\n",
"N_a=(N*a)/(a+2)\n",
"print 'No . of modes supported by graded index fiber=',N_a"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.2.5,Pg.no.763"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a) the normilized index difference is 0.002\n",
"b) cladding index required is 1.55\n",
"The max acceptance angle is 0.1\n"
]
}
],
"source": [
"import math\n",
"from math import pi\n",
"d=10*10**-6\n",
"wav=1.3*10**-6\n",
"n1=1.55\n",
"V_max=2.405\n",
"NA=(V_max*wav)/(pi*d)\n",
"#a) Determination of maximum normailized index difference\n",
"del1=(0.5)*((NA/n1)**2)\n",
"del1=round(del1,3)\n",
"print 'a) the normilized index difference is',del1\n",
"#b) Determination of r effective index of claddin glass\n",
"n2=n1*(1-del1)\n",
"n2=round(n2,2)\n",
"print 'b) cladding index required is',n2\n",
"#Determination of the fiber acceptance angle\n",
"theta_max=math.asin(NA)\n",
"theta_max=round(theta_max,3)\n",
"print'The max acceptance angle is',theta_max"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.3.1,Pg.no.766"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a)The repeater dist for 0.9um wavelength is 12 km\n",
"b)The repeater dist for 1.5um wavelength is 83.33 km\n"
]
}
],
"source": [
"import math\n",
"A_max=25\n",
"A1=2\n",
"A2=0.3\n",
"#a) Determination of repeater dist at 0.9um wavelength\n",
"z1=A_max/A1\n",
"print 'a)The repeater dist for 0.9um wavelength is',z1,'km'\n",
"#b) Determination of repeater dist at 1.5um wavelength\n",
"z2=A_max/A2\n",
"z2=round(z2,2)\n",
"print 'b)The repeater dist for 1.5um wavelength is',z2,'km'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.4.1,Pg.no.772"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The intermodal dispersion is 1.37e-07 s/km\n",
"The intermodal dispertion for l=12.5 is 1.71e-09 s\n"
]
}
],
"source": [
"import math\n",
"#given\n",
"n1=1.55\n",
"del1=0.0258\n",
"l=12.5\n",
"z=1000\n",
"c=3*10**8 #velocity of light\n",
"#a) Determination of intermodal dispersion\n",
"del_per_km=(n1*z*del1)/((1-del1)*c)*10**7\n",
"del_per_km=round(del_per_km,2)*10**-7\n",
"print 'The intermodal dispersion is',del_per_km ,'s/km'\n",
"#b) Determination of intermodal dispersion for l =12.5\n",
"del_l=del_per_km*l/1000*10**9\n",
"del_l=round(del_l,2)*10**-9\n",
"print 'The intermodal dispertion for l=12.5 is',del_l,'s'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.4.2,Pg.no.773"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The intermodal dispersion is 5.37e-05 sec\n"
]
}
],
"source": [
"import math\n",
"n1=1.55\n",
"del1=(258.0)*(10**-2)\n",
"z=1000\n",
"c=3*10**8\n",
"z_disp=12.5\n",
"del_graded=(n1*z*del1**2)/(8*c)\n",
"#Determination of intermodal dispersion\n",
"del_total=del_graded*z_disp*10**5\n",
"del_total=round(del_total,2)*10**-5\n",
"print 'The intermodal dispersion is',del_total,'sec'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.4.3,Pg.no.774"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The total material dispersion is -2.8125 ns\n"
]
}
],
"source": [
"import math\n",
"#given\n",
"wav_0=0.8*10**-6\n",
"Dm=-0.15\n",
"wav_3=1.5\n",
"z=12.5\n",
"del_t=Dm*wav_3\n",
"#Determination of total material dispersion\n",
"del_md=del_t*z\n",
"print 'The total material dispersion is',del_md,'ns' "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.4.4,Pg.no.775"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Expected waveguide dispersion is 495.0 ps\n"
]
}
],
"source": [
"import math\n",
"#given\n",
"Dm=6.6\n",
"z=12.5\n",
"del_3=6\n",
"del_wg=Dm*z*del_3\n",
"print'Expected waveguide dispersion is',del_wg,'ps'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.4.5,Pg.no.776"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The total dispersion is 1.0 ns\n",
"The max allowed bit rate is 500.0 Mbps\n"
]
}
],
"source": [
"import math\n",
"#given\n",
"del_imd=0\n",
"del_md=2.81\n",
"del_wgd=0.495\n",
"t_w=2.5\n",
"del_tot=((del_imd**2)+(del_md**2)+(del_wgd**2))**(1/2)\n",
"print 'The total dispersion is',del_tot,'ns'\n",
"t_r=((t_w**2)+(del_tot**2))**(1/2) \n",
"#Determination of max allowed bit rate\n",
"B=(1000/(2*t_r))\n",
"print 'The max allowed bit rate is',B,'Mbps'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.4.6,Pg.no.778"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a)The BW distance product for fiber is 0.125 Mbps−km\n",
"b)The disp limited length for a fiber is 12.5 km\n"
]
}
],
"source": [
"import math\n",
"#given\n",
"del_t=4.0\n",
"B=10.0\n",
"#a) Determination of BW distance product\n",
"BDP=1/(2*del_t)\n",
"print'a)The BW distance product for fiber is',BDP,'Mbps−km'\n",
"#b) Determiation of dispersion limited length\n",
"z_max_disp=BDP/(B*10**-3)\n",
"print'b)The disp limited length for a fiber is',z_max_disp,'km'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.5.1,Pg.no.780"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a) i) the wavelength is 0.7 um\n",
"a) ii) the freq is 459307010.5 MHz\n",
"b) i) the wavelength is 0.85 um\n",
"b) ii) the freq is 352941176.471 MHz\n",
"c)i) the wavelength is 1.3 um\n",
"c)ii) the freq is 230620467.4 MHz\n"
]
}
],
"source": [
"import math\n",
"E1=1.9\n",
"E2=1.46\n",
"E3=0.954\n",
"eV=1.9 #All in eV\n",
"c=3*10**8 #speed of light\n",
"#a) Determination of wavelength and freq for E1=1.9\n",
"wav1=1.241/E1\n",
"f1=c/(wav1)\n",
"wav1=round(wav1,1)\n",
"f1=round(f1,1)\n",
"print 'a) i) the wavelength is',wav1,'um'\n",
"print 'a) ii) the freq is',f1,'MHz'\n",
"#b) Determination of wavelength and freq for E2=1.46\n",
"wav2=1.241/E2\n",
"f2=c/(wav2)\n",
"print 'b) i) the wavelength is',wav2,'um'\n",
"print 'b) ii) the freq is',f2,'MHz'\n",
"#c ) Determination of wavelength and freq for E3=0.945\n",
"wav3=1.241/E3\n",
"f3=c/(wav3)\n",
"wav3=round(wav3,1)\n",
"f3=round(f3,1)\n",
"print'c)i) the wavelength is',wav3,'um'\n",
"print'c)ii) the freq is',f3,'MHz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 20.8.1,Pg.no.799"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a) the loss−limited fiber is 17.75 km\n",
"b) the max BW for loss−limited length is 0.022 Gbps\n",
"the dispertion limited length is 11.32 km\n"
]
}
],
"source": [
"import math\n",
"#given\n",
"pt=0\n",
"pr=-57\n",
"Nc=2\n",
"BER=10**-9\n",
"N=5\n",
"Lpt=6\n",
"Lpr=6\n",
"Lc=1\n",
"Ls =0.5\n",
"Lf=2\n",
"M=5\n",
"del_t=0.505\n",
"B=35\n",
"Ns=5\n",
"#a) Determination of loss−limited fiber length\n",
"z=(pt-pr-M-(Nc*Lc)-(Ns*Ls)-Lpt-Lpr)/Lf\n",
"print 'a) the loss−limited fiber is',z,'km'\n",
"#b) Determination of max BW for loss−limited fiber length\n",
"B_max=1/(5*del_t*z)\n",
"B_max=round(B_max,3)\n",
"print 'b) the max BW for loss−limited length is',B_max,'Gbps'\n",
"#c ) Determination of dispersion−limited length\n",
"z_disp=1000/(5*del_t*B)\n",
"z_disp=round(z_disp,2)\n",
"print 'the dispertion limited length is',z_disp,'km'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|