1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter18 Fascimile and Television"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 18.2.1,Pg.no.671"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The index of co−operation is 1105.84\n"
]
}
],
"source": [
"import math\n",
"from math import pi\n",
"#given\n",
"D=70.4\n",
"P=0.2 \n",
"#Determination of index of co−operation\n",
"IOC_CCITT=D/P\n",
"IOC_IEEE=IOC_CCITT*(pi)\n",
"IOC_IEEE=round(IOC_IEEE,2)\n",
"print 'The index of co−operation is',IOC_IEEE"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 18.2.2,Pg.no.676"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The no . of pixels in scan line is 826.0 pixels/line \n",
"The scan rate is 2 lines/sec \n",
"The pixel rate is 1652.0 pixels/sec\n",
"The document Transmission time is 8 sec\n"
]
}
],
"source": [
"import math\n",
"from math import pi\n",
"D=68.4\n",
"P=0.26\n",
"rpm=120\n",
"n=1075\n",
"#Determination of no . of pixels scan\n",
"Npx=(pi)*(D/P)\n",
"Npx=round(Npx,0)\n",
"print 'The no . of pixels in scan line is',Npx,'pixels/line ' \n",
"#Determination of scan rate\n",
"Rs=rpm/60\n",
"print 'The scan rate is',Rs,'lines/sec '\n",
"#Determination of pixel rate is\n",
"Rpx=Npx*Rs\n",
"Rpx=round(Rpx,0)\n",
"print 'The pixel rate is',Rpx,'pixels/sec'\n",
"f_max=Rpx/2\n",
"#Determination of document Tx time\n",
"td=n/(60*Rs)\n",
"print 'The document Transmission time is',td,'sec'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 18.3.1,Pg.no.693"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The no . of pixel periods in line period is 485 lines\n",
"The picture height is 485 pixels\n",
"The picture length is 580.8 pixels\n"
]
}
],
"source": [
"import math\n",
"a=(4/3) #aspect ratio\n",
"N=525 #no . of line periods per frame\n",
"Ns=40 #no . of suppressed lines\n",
"#Determination of no . of pixel periods in line period\n",
"Nv=N-Ns\n",
"print 'The no . of pixel periods in line period is',Nv,'lines'\n",
"#Determination of picture height and width\n",
"Nh=a*Nv\n",
"print 'The picture height is',Nh,'pixels'\n",
"Nl=(Nh/0.835)\n",
"Nl=round(Nl,1)\n",
"print 'The picture length is',Nl,'pixels'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 18.3.2,Pg.no.694"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The horizontal frequency is 15750.0 Hz\n",
"The vertical frequency is 60.0 Hz\n",
"The time required to scan one line is 6.35e-05 sec\n"
]
}
],
"source": [
"import math\n",
"N=525.0\n",
"P=30.0\n",
"#Determination of horizontal and vertical synchhronization freq .\n",
"fh=N*P\n",
"print 'The horizontal frequency is',fh,'Hz'\n",
"fv=2*P\n",
"print 'The vertical frequency is',fv,'Hz'\n",
"#Determination of time reqd to scan one line\n",
"Th=((fh)**-1)*10**5\n",
"Th=round(Th,2)*10**-5\n",
"print 'The time required to scan one line is',Th,'sec'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 18.3.3,Pg.no.695"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the band width is 4272187.5 Hz\n"
]
}
],
"source": [
"import math\n",
"fh=15750\n",
"Nl=775\n",
"#Determination of video bandwidth\n",
"Bv=0.35*fh*Nl\n",
"Bv=round(Bv,1)\n",
"print 'the band width is',Bv,'Hz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 18.7.1,Pg.no.706"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The viewing angle is 10.78 degrees\n",
"The min.viewing dist is -0.14 m\n"
]
}
],
"source": [
"import math\n",
"from math import sqrt\n",
"a=4/3 #aspect ratio\n",
"D=48.26*10**-2 #CRT tube diagonal\n",
"Nh=647.0\n",
"H=sqrt((a**2)*(D**2)/(1+a**2))\n",
"#Determination of viewing angle & minimum distance\n",
"w=H/Nh\n",
"theta=Nh*(1/60.0) #As each pixel subtend 1 minute of arc\n",
"theta=round(theta,2)\n",
"print 'The viewing angle is',theta,'degrees' \n",
"X=H/(2*math.tan(theta/2))\n",
"X=round(X,2)\n",
"print 'The min.viewing dist is',X,'m'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 18.7.2,Pg.no.707"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The viewing angle is 30.67 degrees\n",
"The viewing dist is -1.27 m\n"
]
}
],
"source": [
"import math\n",
"from math import sqrt\n",
"a=16/9\n",
"D=1.40\n",
"Nh=1840.0 #Assuming square pixel\n",
"H=sqrt((a**2)*(D**2)/(1+a**2))\n",
"#Determination of viewing angle\n",
"theta=Nh*(1/60.0)\n",
"theta=round(theta,2)\n",
"print 'The viewing angle is',theta,'degrees'\n",
"#Determination of viewing dist\n",
"X=H/(2*math.tan(theta/2));\n",
"X=round(X,2)\n",
"print 'The viewing dist is',X,'m'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|