1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 6 : Receivers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1 : pg 227"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Bandwidth at 1700kHz is 17.743 kHz\n"
]
}
],
"source": [
" \n",
"#page no 227\n",
"#prob no. 6.1\n",
"#calculate the bandwidth\n",
"#given\n",
"from math import sqrt\n",
"#A tuned ckt with broadast band (540 to 1700 kHz).Bw=10kHz at 540 kHz\n",
"BW1=10.*10**3;f1=540.*10**3;f2=1700.*10**3;#all in Hz\n",
"#calculations\n",
"#Determination of BW at 1700kHz\n",
"BW2=BW1*sqrt(f2/f1);\n",
"#results\n",
"print 'The Bandwidth at 1700kHz is ',round(BW2/1000,3),'kHz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4 : pg 236"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The voltage value of signal is 1.581 mV\n"
]
}
],
"source": [
" \n",
"#page no 236\n",
"#prob no. 6.4\n",
"#calculate the voltage value of the signal\n",
"#given\n",
"#A receiver with sensitivity 0.5uV & blocking dynamic range 70dB.\n",
"#Determination of vpltage signal V1 \n",
"P1_P2=70.;V2=0.5*10**-6;#let\n",
"#calculations\n",
"V1=V2*10**(P1_P2/20);\n",
"#results\n",
"print 'The voltage value of signal is',round(V1*1000,3),'mV'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5 : pg 238"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a)The image freq is 1500.0 kHz\n",
"b)The image rejection is 38.687 dB\n"
]
}
],
"source": [
" \n",
"#page no 238\n",
"#prob no. 6.5\n",
"#calculate the image freq and rejection\n",
"#Refer the fig 6.5\n",
"from math import sqrt, log10\n",
"#A receiver tuned to station at 590kHz \n",
"#given\n",
"f_if=455.*10**3;#Intermediate freq\n",
"f_sig=590.*10**3;\n",
"#calculations and results\n",
"#a)Determintion of image freq\n",
"f_image=f_sig+2*f_if;\n",
"print 'a)The image freq is',f_image/1000,'kHz'\n",
"Q=40.;#Q_factor\n",
"#b)Determination of image rejection \n",
"x=(f_image/f_sig)-(f_sig/f_image);\n",
"Asig_Aimage=sqrt(1+(Q*x)**2);#image rejection\n",
"#converting in dB\n",
"IR_dB=20*log10(Asig_Aimage);\n",
"print 'b)The image rejection is',round(IR_dB,3),'dB'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6 : pg 239"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"All freqs are in MHz. The different freqs are [ 10. -0.9 21.8 0. ] [ 10. -0.9 21.8 0. ]\n"
]
}
],
"source": [
" \n",
"#page no 239\n",
"#prob no. 6.6\n",
"#calculate the frequencies in all cases\n",
"#given\n",
"import numpy\n",
"#An AM high-freq receiver with IF=1.8MHz tuned at freq 10MHz\n",
"f_sig = 10\n",
"f_if = 1.8#All freq in MHz\n",
"#calculations\n",
"#Determination of local oscillator freq f_lo\n",
"f_lo = f_sig + f_if\n",
"#determination of freq. that cause IF response\n",
"m = ([1, 1, 2, 2])#values of m that are integer\n",
"n = ([1, 2, 1, 2])#values of n that are integer\n",
"fs1 = fs2 = numpy.zeros(4);\n",
"for i in range(0,3):\n",
" fs1[i] = ((m[i] / n[i]) * (f_lo)) + ((f_if) / n[i])\n",
"\n",
"for i in range(0,3):\n",
" fs2[i] = ((m[i] / n[i]) * (f_lo)) - ((f_if) / n[i])\n",
"\n",
"print 'All freqs are in MHz.','The different freqs are',fs1,fs2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7 : pg 245"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the sensitivity of detector is 60.0 uV/Hz\n"
]
}
],
"source": [
" \n",
"#page no 245\n",
"#prob no. 6.7\n",
"#calculate the sensitivity of detector\n",
"#An FM detector produce Vpp=1.2V with dev=10kHz\n",
"#given\n",
"Vpp=1.2;dev=10.*10**3;\n",
"#calculations\n",
"#Determination of detector sensitivity\n",
"Vp=Vpp/2;#Peak voltage\n",
"kd=Vp/dev;\n",
"#results\n",
"print 'the sensitivity of detector is',kd*10**6,'uV/Hz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8 : pg 249"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The RMS voltage is 0.53 V\n"
]
}
],
"source": [
" \n",
"#page no 249\n",
"#prob no. 6.8\n",
"#calculate the rms voltage\n",
"from math import sqrt\n",
"#given\n",
"#A PLL FM detector with kf=100kHz/V & dev=75kHz\n",
"kf=100.*10**3;dev=75.*10**3;\n",
"#calculations\n",
"#Determination of RMS voltage\n",
"Vp_op=dev/kf;\n",
"#Converting peak voltage in RMS voltage\n",
"V_RMS=Vp_op/sqrt(2);\n",
"#results\n",
"print 'The RMS voltage is',round(V_RMS,3),'V'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9 : pg 258"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a)The critical coupling factor is 0.029\n",
"b)The optimum coupling factor is 0.043\n",
"c)The BW using optimum coupling factor is 19.702 kHz\n"
]
}
],
"source": [
" \n",
"#page no 258\n",
"#prob no. 6.9\n",
"#calculate the critical and optimum coupling factor, BW\n",
"from math import sqrt\n",
"#given\n",
"#An IF transformer at 455kHz & primary ckt has Qp=40 & secondary Q=30\n",
"fo=455.*10**3;Qp=40.;Qs=30.;\n",
"#calculations and results\n",
"#a)Determination of critical coupling factor\n",
"kc=1/sqrt(Qp*Qs);\n",
"print 'a)The critical coupling factor is',round(kc,3)\n",
"#b)Determination of optimum coupling factor\n",
"Kopt=1.5*kc;\n",
"print 'b)The optimum coupling factor is',round(Kopt,3)\n",
"#c)Determination of optimum coupling factor\n",
"B=Kopt*fo;\n",
"print 'c)The BW using optimum coupling factor is',round(B/1000,3),'kHz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10 : pg 261"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The first IF is 4.5 MHz\n",
"The second IF is 500.0 kHz\n"
]
}
],
"source": [
" \n",
"#page no 261\n",
"#prob no. 6.10\n",
"#calculate the first and second IF\n",
"#given\n",
"#Receiver refering in fig.6.28\n",
"f_sig=25*10**6;#signal i/p freq\n",
"f_lo1=29.5*10**6;#Ist local oscillator freq\n",
"#calculations and results\n",
"#determination of Ist IF which uses high side injection\n",
"f_IF1=f_lo1-f_sig;#high side injection\n",
"print 'The first IF is',f_IF1/10**6,'MHz'\n",
"#Determination of IInd IF which uses low side injection\n",
"f_lo2=4*10**6;#IInd local oscillator freq\n",
"f_IF2=f_IF1-f_lo2;\n",
"print 'The second IF is',f_IF2/10**3,'kHz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11 : pg 265"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Signal strength at receiver i/p is 6.295 uV\n"
]
}
],
"source": [
" \n",
"#page no 265\n",
"#prob no. 6.11\n",
"#calculate the signal strength at receiver i/p\n",
"#An S-meter is given\n",
"#given\n",
"V1=50*10**-6;#signal strength at transmitter in V\n",
"P=18.;#18 dB power\n",
"#calculations\n",
"V2=V1/(10**(P/20.));\n",
"#results\n",
"print 'Signal strength at receiver i/p is' ,round(V2*10**6,3),'uV'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|