1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3 : The Amplitude Modulation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1 : pg 105"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"V(t) = ( 2.83 + 1.41 *sin( 3142.0 *t))*sin( 9424778.0 *t) V\n"
]
}
],
"source": [
"# page no 105\n",
"# prob no 3.1\n",
"#calculate the Voltage equation\n",
"from math import pi, sqrt\n",
"# given\n",
"Erms_car=2; f_car=1.5*10**6;f_mod=500;Erms_mod=1;\n",
"# Equation requires peak voltages & radian frequencies\n",
"#calculations\n",
"Ec=sqrt(2)*Erms_car; Em=sqrt(2)*Erms_mod;\n",
"wc=2*pi*f_car; \n",
"wm=2*pi*f_mod;t=1;\n",
"#results\n",
"# Therefore the equation is \n",
"print 'V(t) = (',round(Ec,2),'+ ',round(Em,2),'*sin(',round(wm),'*t))*sin(',round(wc),'*t) V'\n",
"#print 'v(t) = (2.83+1.41*sin(3.14*10**3*t))*sin(9.42*10**6*t) V'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2 : pg 106"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"m = 0.5\n",
"The equation can be obtained as v(t) = 2.83(1+ 0.5 *sin(3.14*10**3*t))*sin(9.42*10**6*t) V\n"
]
}
],
"source": [
"#page no 106\n",
"#prob no 3.2\n",
"#calculate the voltage equation\n",
"# To avoid the round-off errors we should use the original voltage values\n",
"#given\n",
"Em=1.;Ec=2.;\n",
"#Calculations\n",
"m=Em/Ec;\n",
"#results\n",
"print 'm =',m\n",
"print 'The equation can be obtained as','v(t) = 2.83(1+ ',m,'*sin(3.14*10**3*t))*sin(9.42*10**6*t) V',"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3 : pg 109"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The modulation index is 0.374\n"
]
}
],
"source": [
"#page no 109\n",
"#prob no 3.3\n",
"#calculate the modulation index\n",
"from math import sqrt\n",
"#given\n",
"E_car=10.;E_m1=1.;E_m2=2.;E_m3=3.;\n",
"#calculations\n",
"m1=E_m1/E_car;\n",
"m2=E_m2/E_car;\n",
"m3=E_m3/E_car;\n",
"mT=sqrt(m1**2+m2**2+m3**2);\n",
"#results\n",
"print 'The modulation index is',round(mT,3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4 : pg 110"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The modulation index is 0.364\n"
]
}
],
"source": [
"#page no 110\n",
"#prob no 3.4\n",
"#calculate the modulation index\n",
"#refer fig 3.2\n",
"#given\n",
"E_max=150.; E_min=70;# voltages are in mV\n",
"#calculations\n",
"m=(E_max-E_min)/(E_max+E_min);\n",
"#results\n",
"print 'The modulation index is',round(m,3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6 : pg 114"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The maximum modulation freq is 5000.0 Hz\n"
]
}
],
"source": [
"#page no 114\n",
"#prob no 3.6\n",
"#calculate the max modulation frequency\n",
"#given\n",
"B=10.*10**3;\n",
"#calculations\n",
"# maximum modulation freq is given as \n",
"fm=B/2;\n",
"#results\n",
"print 'The maximum modulation freq is',fm,'Hz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7 : pg 116"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The total power is 66.0 kW\n"
]
}
],
"source": [
"#page no 116\n",
"#prob no 3.7\n",
"# AM broadcast transmitter\n",
"#calculate the total power\n",
"#given\n",
"Pc=50.;m=0.8;#power is in kW\n",
"#calculations\n",
"Pt=Pc*(1+m**2 /2);\n",
"#results\n",
"print 'The total power is',Pt,'kW'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8 : pg 118"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Signal Frequency in Hz = 426000\n"
]
}
],
"source": [
"# page no 118\n",
"# prob no 8.6\n",
"#calculate the signal frequency\n",
"#2 kHz tone is present on channel 5 of group 3 of supergroup\n",
"#signal is lower sided so\n",
"#given\n",
"fc_channel_5=92*10**3;\n",
"#calculations\n",
"fg=fc_channel_5 - (2*10**3);# 2MHz baseband signal\n",
"# we know group 3 in the supergroup is moved to the range 408-456 kHz with a suppressed carrier frequency of 516kHz\n",
"f_s_carr=516*10**3;\n",
"fsg=f_s_carr - fg;\n",
"#results\n",
"print'The Signal Frequency in Hz =',fsg;"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9 : pg 122"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The total power is 200.0 uW\n",
"The modulating freq is 2.0 kHz\n",
"The carrier freq 10.0 MHz\n"
]
}
],
"source": [
"#page no 122\n",
"#prob no. 3.9\n",
"#calculate the total power, modulating frequency and carrier frequency\n",
"# refer fig 3.14\n",
"#given\n",
"# from spectrum we can see that each of the two sidebands is 20dB below the ref level of 10dBm. \n",
"#Therefore each sideband has a power of -10dBm i.e. 100uW.\n",
"power_of_each_sideband = 100.;\n",
"#calculations and results\n",
"Total_power = 2.* power_of_each_sideband;\n",
"print 'The total power is',Total_power,'uW'\n",
"div=4; freq_per_div=1.;\n",
"sideband_separation = div * freq_per_div;\n",
"f_mod= sideband_separation/2;\n",
"print 'The modulating freq is ',f_mod,'kHz'\n",
"# Even if this siganl has no carrier, it still has a carrier freq which is midway between the two sidebands. Therefore\n",
"carrier_freq = 10.;\n",
"print 'The carrier freq',carrier_freq,'MHz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10 : pg 126"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The o/p freq f_out1 is 7 MHz\n",
"The o/p freq f_out2 is 7.9965 MHz\n"
]
}
],
"source": [
"# page no 126\n",
"# prob no 3.10\n",
"#calculate the o/p frequency in both cases\n",
"#given\n",
"f_car=8*10**6;f_mod1=2*10**3;f_mod2=3.5*10**3;\n",
"#calculations\n",
"#Signal is LSB hence o/p freq is obtained by subtracting f_mod from f_car\n",
"f_out1=f_car-f_mod1; \n",
"f_out2=f_car-f_mod2; \n",
"#results\n",
"print 'The o/p freq f_out1 is ',f_out1/(10**6),'MHz'\n",
"print 'The o/p freq f_out2 is ',f_out2/(10**6),'MHz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11 : pg 127"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The value of average power of signal is 1.5625 W\n"
]
}
],
"source": [
"# page no 127\n",
"# prob no 3.11\n",
"#calculate the value of average power of signal\n",
"from math import sqrt\n",
"#Refering the fig. 3.17\n",
"#From fig it is clear that thee waveform is made from two sine waves \n",
"#given\n",
"Vp=12.5;#Since Vp-p is 25V from fig hence individual Vp is half of Vp-p\n",
"Rl=50.;#Load resistance is 50 ohm\n",
"#Determination of average power\n",
"#calculations\n",
"Vrms=Vp/sqrt(2);\n",
"P=((Vrms)**2)/Rl;\n",
"#results\n",
"print 'The value of average power of signal is ',P,'W'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|