summaryrefslogtreecommitdiff
path: root/Electronic_Communication_Systems_by_Roy_Blake/Chapter20.ipynb
blob: 7a56204a18067d7792a2ba1f3fa9a2a79ee7f5bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 20 : Satellite Communication"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 1 : pg 754"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "A) The velocity of a satellite is 7613.87 m/s\n",
      "The orbital period of satellite is 5694.08 sec\n",
      "B) The velocity of a satellite is 3071.48 m/s\n",
      "The orbital period of satellite is 86735.85 sec\n"
     ]
    }
   ],
   "source": [
    " \n",
    "# page no 754\n",
    "# prob no 20.1\n",
    "# part A)\n",
    "from math import pi, sqrt\n",
    "#calculate the velocity and orbital period of satellite in both cases\n",
    "#given\n",
    "d=500.;\n",
    "#calculations and results\n",
    "#By using the equation for velocity of a satellite\n",
    "v=sqrt(4*10**11/(d+6400));\n",
    "print 'A) The velocity of a satellite is',round(v,2),'m/s'\n",
    "# The radius of orbit is \n",
    "r=(6400+d)*10**3#in m\n",
    "#The orbital period of satellite is\n",
    "T=(2*pi*r)/v;\n",
    "print 'The orbital period of satellite is',round(T,2),'sec'\n",
    "#part B)\n",
    "d=36000.;\n",
    "#By using the equation for velocity of a satellite\n",
    "v=sqrt(4*10**11/(d+6400));\n",
    "print 'B) The velocity of a satellite is',round(v,2),'m/s'\n",
    "#The radius of orbit is \n",
    "r=(6400+d)*10**3#in m\n",
    "#The orbital period of satellite is\n",
    "T=(2*pi*r)/v;\n",
    "print 'The orbital period of satellite is',round(T,2),'sec'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 2 : pg 757"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "required angle is  6.8137529672 degrees\n"
     ]
    }
   ],
   "source": [
    " \n",
    "# page no 757\n",
    "# prob no 20.2\n",
    "#calculate the required angle\n",
    "#given\n",
    "from math import atan, cos, sin, pi\n",
    "R = 6400.#Radius of earth\n",
    "L = 45.#earth station lattitude\n",
    "H = 36000.#Height of satellite above the earth;\n",
    "#calculations\n",
    "ang = atan((6400. * sin(L * pi / 180.)) / (36000 + (6400 * (1 - cos(L * pi / 180.))))) * 180 / pi\n",
    "#results\n",
    "print \"required angle is \",ang, \"degrees\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 3 : pg 758"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The length of the path is 38836.175 km\n"
     ]
    }
   ],
   "source": [
    " \n",
    "# page no 758\n",
    "# prob no 20.3\n",
    "#calculate the length of the path\n",
    "#given\n",
    "from math import sqrt, sin, cos, pi\n",
    "#Determination of lenght of geostationary satellite with angle of elavation=30\n",
    "#degree\n",
    "r = 64. * 10 ** 5#Radius of earth\n",
    "h = 36. * 10 ** 6#height of satellite\n",
    "theta = 30 * pi / 180.#angle of elevation\n",
    "#calculations\n",
    "d = sqrt(((r + h) ** 2) - ((r * cos(theta)) ** 2)) - (r * sin(theta))\n",
    "#results\n",
    "print 'The length of the path is',round(d / 1000,3),'km'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 4 : pg 759"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The value of signal strength at receiver -88.071 dBm\n"
     ]
    }
   ],
   "source": [
    " \n",
    "# page no 759\n",
    "# prob no 20.4\n",
    "#calculate the value of signal strength\n",
    "#given\n",
    "from math import log10\n",
    "#A satellite transmitter operates at 4GHz with 7W & antenna gain 40dBi\n",
    "#Receiver antenna gain 30dBi & path length is 4*10**7\n",
    "Gt_dBi = 40.\n",
    "Gr_dBi = 30.\n",
    "Pt = 7\n",
    "d = 40000.#in km\n",
    "f = 4000.#in MHz\n",
    "#calculations\n",
    "Pr_Pt_dB = Gt_dBi + Gr_dBi - (32.44 + (20 * log10(d)) + (20 * log10(f)))\n",
    "#Signal strength at transmitter\n",
    "Pt_dBm = 10 * log10(Pt / 10 ** -3)\n",
    "Pr_dBm = (Pt_dBm) + (Pr_Pt_dB)\n",
    "#results\n",
    "print 'The value of signal strength at receiver',round(Pr_dBm,3),'dBm'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5 : pg 760"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The receiver noise temperature is 21.013 dB\n"
     ]
    }
   ],
   "source": [
    " \n",
    "# page no 760\n",
    "# prob no 20.5\n",
    "#calculate the receiver\n",
    "#given\n",
    "from math import log10\n",
    "# In the given problem\n",
    "G = 40# receiving antenna gain\n",
    "T_sky = 15.# noise temp\n",
    "L = 0.4#loss between antenna and LNA input\n",
    "T_eq = 40.# noise temperature f LNA\n",
    "#calculations\n",
    "# Fir-st we have to find G in dB\n",
    "G_dB = G - L\n",
    "# For the calculation of T, we have to convert the feedhorn loss into a ratio\n",
    "# as follows\n",
    "L = 10 ** (0.4 / 10)\n",
    "Ta = ((L - 1) * 290. + T_sky) / L\n",
    "# The receiver noise temperature is given wrt the chosen reference\n",
    "# point,theefore\n",
    "Ratio = G - 10 * log10(Ta + T_eq)\n",
    "#results\n",
    "print 'The receiver noise temperature is',round(Ratio,3),'dB'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 6 : pg 761"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Equivalent noise temperature is 119.64 K\n"
     ]
    }
   ],
   "source": [
    " \n",
    "# page no 761\n",
    "# prob no 20.6\n",
    "#calculate the equivalent noise temperature\n",
    "#given\n",
    "NF_dB=1.5;# noise fig of a receiver\n",
    "#calculations\n",
    "NF=10**(NF_dB/10);\n",
    "# Equivalent noise temperature is giveb as\n",
    "T_eq=290*(NF-1);\n",
    "#results\n",
    "print 'Equivalent noise temperature is',round(T_eq,2),'K'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7 : pg 761"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The carrier to noise ratio at the receiver is 30.97 dB\n"
     ]
    }
   ],
   "source": [
    " \n",
    "# page no 761\n",
    "# prob no 20.7\n",
    "#calculate the carrier to noise ratio\n",
    "#given\n",
    "from math import log10\n",
    "# refer prob no 20.5\n",
    "d=38000.;#distance of satellite from the Earth surface\n",
    "P=50.;#transmitter power\n",
    "G=30.;#antenna gain\n",
    "f=12000.;#frequency in MHz\n",
    "B=10**6;# Bandwidth in MHz\n",
    "#from problem no 2.5\n",
    "G_T=21;\n",
    "L_misc=0;\n",
    "k_dBW=-228.6;#Boltzmann's constant in dBW\n",
    "#calculations\n",
    "# There are no miscellaneous loss\n",
    "#The stellite transmitting power in dBW is \n",
    "Pt_dBW = 10*log10(P);\n",
    "# The EIPR in dBW \n",
    "EIRP_dBW=Pt_dBW + G;\n",
    "#FSL in dB\n",
    "FSL_dB= 32.44 + (20*log10(d)) + (20*log10(f));\n",
    "# The carrier to noise ratio is\n",
    "ratio=EIRP_dBW - FSL_dB - L_misc + G_T - k_dBW - 10*log10(B);\n",
    "#results\n",
    "print 'The carrier to noise ratio at the receiver is',round(ratio,2),'dB'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 8 : pg 762"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The total time delay is  0.000533 sec\n"
     ]
    }
   ],
   "source": [
    " \n",
    "# page no 762\n",
    "# prob no 20.8\n",
    "#calculate the total time delay\n",
    "#given\n",
    "D=40000.;# distance of satellite from the earth station\n",
    "v=3*10**8;# velo of light\n",
    "d=80000.;# distance between two earth stations\n",
    "#calculations\n",
    "# time delay is given as\n",
    "t=d/v;\n",
    "# total time delay will be twice that of calculated above\n",
    "T=2*t;\n",
    "#results\n",
    "print 'The total time delay is ',round(T,6),'sec'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 9 : pg 769"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The gain of TVRO is  39.39 dB\n",
      "The beamwidth is 1.75 degree\n"
     ]
    }
   ],
   "source": [
    " \n",
    "# page no 769\n",
    "# prob no 20.9\n",
    "#calculate the gain and beamwidth\n",
    "#given\n",
    "from math import pi, log10\n",
    "f_down = 4*10**9;# downlink freq\n",
    "D=3.;#diameter\n",
    "n=0.55;#efficiency\n",
    "c=3.*10**8;#velo of light\n",
    "#calculations\n",
    "# The gain of a parabolic antenna is given as G=(n*%pi**2*D**2)/wl**2. Therefore wavelength is given as\n",
    "wl=c/f_down\n",
    "G=(n*pi**2*D**2)/wl**2;\n",
    "G_dB = 10*log10(G);\n",
    "# The beamwidth is given as\n",
    "bw= (70*wl)/D;\n",
    "#results\n",
    "print 'The gain of TVRO is ',round(G_dB,2),'dB'\n",
    "print 'The beamwidth is',round(bw,2),'degree'"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}