1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 18 : Terrestrial Microwave system"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1 : pg 676"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The height of each tower must be at least 23.529 m\n"
]
}
],
"source": [
" \n",
"# page no 676\n",
"#calculate the height of each tower\n",
"# prob no 18_1\n",
"#given\n",
"#Transmitter and receiver have same height at dist 40km\n",
"d=40;#dist is 40 km\n",
"#calculations\n",
"h=(d**2)/68.;# As d=sqrt(17h)+sqrt(17h)\n",
"#results\n",
"print 'The height of each tower must be at least',round(h,3),'m'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2 : pg 678"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The distance by which beam must clear the obstacle is 11.63 m\n"
]
}
],
"source": [
" \n",
"# page no 678\n",
"# prob no 18_2\n",
"from math import sqrt\n",
"#calculate the distance required\n",
"#A line of sight radio link at freq 6GHz with seperation 40 km betn antennas\n",
"#given\n",
"f=6.;d1=10.;d2=30;#obstacle located at 10 km\n",
"#calculations\n",
"#Determination of dist R to clear obstacle \n",
"R=10.4*sqrt((d1*d2)/(f*(d1+d2)));\n",
"#results\n",
"print 'The distance by which beam must clear the obstacle is',round(R,2),'m'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3 : pg 679"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The power delivered to the Rx is -62.03 dBm\n"
]
}
],
"source": [
" \n",
"# page no 679\n",
"# prob no 18_3\n",
"#calculate the power delivered\n",
"from math import log10\n",
"#given\n",
"#A transmitter and receiver at 6GHz seperated by 40km with o/p power 2 W\n",
"f = 6 * 10 ** 9\n",
"d = 40.\n",
"Pt = 2# power in watt\n",
"#transmitting antenna gain Gt=20dBi,receiving antenna Gr=25dBi\n",
"Gt = 20\n",
"Gr = 25\n",
"f_mhz = 6000#f=6000 MHz\n",
"#calculations\n",
"Pr_Pt_dB = (Gt + Gr) - (32.44 + (20 * log10(d)) + (20 * log10(f_mhz)))\n",
"Pt_dBm = 10 * log10(Pt / 10 ** -3)\n",
"Pr_dBm = Pt_dBm + Pr_Pt_dB\n",
"#results\n",
"print 'The power delivered to the Rx is',round(Pr_dBm,2),'dBm'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4 : pg 680"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Noise temperature is 120.0 K\n"
]
}
],
"source": [
" \n",
"# page no 680\n",
"#calculate the noise temperature\n",
"# prob no 18_4\n",
"#given\n",
"T_sky = 120.# Sky temp expressed in K\n",
"L_dB = 2# antenna feedline loss\n",
"#calculations\n",
"L = 10 ** (L_dB / 10)\n",
"# the noise temp is given as\n",
"Ta = ((L - 1) * 290 + T_sky) / L\n",
"#results\n",
"print 'Noise temperature is',Ta,'K'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5 : pg 681"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The equivalent noise temperature 169.619 K\n"
]
}
],
"source": [
" \n",
"# page no 681\n",
"# prob no 18.5\n",
"#calculate the equivalent noise temperature\n",
"#given\n",
"NF_dB = 2\n",
"#calculations\n",
"NF_power = 10 ** (NF_dB / 10.)\n",
"T_eq = 290. * (NF_power - 1)\n",
"#results\n",
"print 'The equivalent noise temperature',round(T_eq,3),'K'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6 : pg 681"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The noise power is 9.6876e-14 W\n",
"The thermal noise power is -100.138 dBm\n"
]
}
],
"source": [
" \n",
"# page no 681\n",
"# prob no 18.6\n",
"# refer example no 18.4 and 18.5\n",
"#calculate the noise power in both cases\n",
"from math import log10\n",
"#given\n",
"# The antenna and feedline combination from ex 18.4 is used with the Rx from ex\n",
"# 18.5\n",
"Ta = 182.# noise temp of the antenna and feedline combination expressed in K\n",
"Teq = 169.# noise temperature of the Rx\n",
"B = 20. * 10 ** 6# BW of the receiver\n",
"#calculations\n",
"Tn_sys = Ta + Teq#Noise temp for the system\n",
"k = 1.38 * 10 ** -23#Boltzmann constant\n",
"# Noise power of the system is given as\n",
"Pn = k * Tn_sys * B# where k is Boltzmann constant\n",
"Pn_dBm = 10 * log10(Pn / 10 ** -3)\n",
"#results\n",
"print 'The noise power is',Pn,'W'\n",
"print 'The thermal noise power is',round(Pn_dBm,3),'dBm'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7 : pg 682"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Carrier to noise ratio is 38.0 dB\n"
]
}
],
"source": [
" \n",
"# page no 682\n",
"# prob no 18.7\n",
"#calculate the carrier to noise ratio\n",
"# refer ex no 18.3 and 18.6\n",
"#given\n",
"Pr_dBm = -62.#power at the receiver in dBm\n",
"Pn_dBm = -100.#thermal noise power in dBm\n",
"#calculations\n",
"# carrier to noise ratio in dB is given as\n",
"C_N = Pr_dBm - Pn_dBm\n",
"#results\n",
"print 'Carrier to noise ratio is',C_N,'dB'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8 : pg 683"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Energy per bit to noise density ratio is 27.14 dB\n"
]
}
],
"source": [
" \n",
"# page no 683\n",
"# prob no 18.8\n",
"#calculate the energy per bit to noise density ratio\n",
"# refer ex 18.7\n",
"from math import log10\n",
"#given\n",
"fb = 40 * 10 ** 6# bit rate in bps\n",
"Pr_dBm = -62#power at the receiver in dBm\n",
"Pr = 10 ** (Pr_dBm / 10) * 10 ** -3# power at the receiver in W\n",
"Eb = Pr / fb# the energy per bit in J\n",
"k = 1.38 * 10 ** -23#Boltzmann constant\n",
"T = 350.\n",
"#calculations\n",
"# the noise power density is\n",
"No = k * T\n",
"# Energy per bit to noise density ratio in dB is\n",
"Eb_No = 10 * log10(Eb / No)\n",
"#results\n",
"print 'Energy per bit to noise density ratio is ',round(Eb_No,3),'dB'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9 : pg 686"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The local oscillator freq is 6800.0 MHz\n"
]
}
],
"source": [
" \n",
"# page no 686\n",
"# prob no 18.9\n",
"# refer fig 18.7(b)\n",
"#calculate the local oscillator frequency\n",
"#given\n",
"#This is the standard superheterodyne receiver\n",
"fc=6870.;# the received carrier freq in MHz\n",
"IF=70.;# IF in MHz\n",
"#calculations\n",
"# The local oscillator freq is given as\n",
"f_lo=fc-IF;\n",
"#results\n",
"print 'The local oscillator freq is ',f_lo,'MHz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10 : pg 688"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The freq of shift oscillator is 160.0 MHz\n",
"The local oscillator freq is 6640.0 MHz\n",
"O/P of Mixer 3 is 6800.0 MHz\n"
]
}
],
"source": [
" \n",
"# page no 688\n",
"# prob no 18.10\n",
"# refer fig 18.9a)\n",
"#calculate the freq shift in all cases\n",
"#given\n",
"fc_r = 6870.# carrier freq of received signal in MHz\n",
"fc_t = 6710.#carrier freq of transmitted signal in MHz\n",
"IF = 70.#in MHz\n",
"#calculations and results\n",
"# the freq of shift oscillator is\n",
"fso = fc_r - fc_t\n",
"print 'The freq of shift oscillator is ',fso,'MHz'\n",
"#the local oscillator freq is given as\n",
"flo = fc_t - IF\n",
"print 'The local oscillator freq is ',flo,'MHz'\n",
"#from fig, mixer 3 will produce an o/p as\n",
"op_mix3 = flo + fso\n",
"print 'O/P of Mixer 3 is',op_mix3,'MHz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11 : pg 690"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The number of bits per symbol are 4.0 bits\n",
"The baud rate is 22.631 Mbaud\n"
]
}
],
"source": [
" \n",
"# page no 690\n",
"# prob no 18.11\n",
"#calculate the baud rate and bits per symbol\n",
"#given\n",
"from math import log\n",
"# A typical microwave digital radio system uses 16-QAM.\n",
"fb = 90.524#bit rate expressesd in Mbps\n",
"n = 16# for 16-QAM system\n",
"#calculations and results\n",
"#part a) calculation of no of bits per symbol\n",
"m = log(n) / log(2)\n",
"print 'The number of bits per symbol are',m,'bits'\n",
"# part b) calclation of baud rate\n",
"# baud rate is 1/4th of the bit rate\n",
"baud = fb / 4\n",
"print 'The baud rate is',baud,'Mbaud'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|