1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 15 : Radio Wave Propagation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1 : pg 517"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The charasteristic impedance of polyethylene is 248.586 ohm\n"
]
}
],
"source": [
"#page no 517\n",
"#calculate the characteristic impedance of polyethylene\n",
"#prob no. 15.1\n",
"from math import sqrt\n",
"#Dielectric constt=2.3\n",
"#given\n",
"er=2.3;\n",
"#calculations\n",
"#Determination of characteristic impedance\n",
"Z=377./sqrt(er);\n",
"#results\n",
"print 'The charasteristic impedance of polyethylene is',round(Z,3),'ohm'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2 : pg 518"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The max power density is 23.873 GW/m2\n"
]
}
],
"source": [
"#calculate the max power density \n",
"#page no 518\n",
"#prob no. 15.2\n",
"#given\n",
"#Dielelectric strength of air=3MV/m\n",
"e=3*10**6;#electric field strength\n",
"Z=377.;#impedance of air\n",
"#calculations\n",
"Pd=(e**2)/Z;#Determination of power density\n",
"#results\n",
"print 'The max power density is',round(Pd/10**9,3),'GW/m2'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3 : pg 520"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Power density at a point 10km 79.5774715459 nW/m2\n"
]
}
],
"source": [
"#calculate the power density \n",
"#page no 520\n",
"#prob no. 15.3\n",
"from math import pi\n",
"#given\n",
"#An isotropic radiator with power 100W & dist given is 10km\n",
"Pt=100;r=10*10**3;\n",
"#calculations\n",
"#Determination of power density at r=10km\n",
"Pd=Pt/(4*pi*(r**2));\n",
"#results\n",
"print 'Power density at a point 10km',Pd*10**9,'nW/m2'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4 : pg 521"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The electric field strength is 5.47722557505 mW/m\n"
]
}
],
"source": [
"#calculate the electric field strength \n",
"#page no 521\n",
"#prob no. 15.4\n",
"from math import sqrt\n",
"#given\n",
"#An isotropic radiator radiates power=100W at point 10km\n",
"Pt=100.;r=10.*10**3;\n",
"#calculations\n",
"#Determination of electric field strength\n",
"e=sqrt(30*Pt)/r;\n",
"#results\n",
"print 'The electric field strength is',e*1000,'mW/m'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5 : pg 525"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The power delivered to receiver is 405.812 nW\n"
]
}
],
"source": [
"#calculate the power delivered \n",
"#page no 525\n",
"#prob no. 15.5\n",
"from math import log10\n",
"#A transmitter with power o/p=150W at fc=325MHz.antenna gain=12dBi receiver antenna gain=5dBi at 10km away\n",
"#given\n",
"#considering no loss in the system\n",
"d=10.;Gt_dBi=12.;Gr_dBi=5.;fc=325.;Pt=150.;\n",
"#calculations\n",
"#Determination of power delivered\n",
"Lfs=32.44+(20*log10(d))+(20*log10(fc))-(Gt_dBi)-(Gr_dBi);\n",
"Pr=Pt/(10**(Lfs/10));\n",
"#results\n",
"print 'The power delivered to receiver is',round(Pr*10**9,3),'nW'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6 : pg 525"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The power delivered to receiver is 2.04329571558e-09 W\n"
]
}
],
"source": [
"#calculate the power delivered to receiver \n",
"#page no 525\n",
"#prob no. 15.6\n",
"#given\n",
"from math import log10\n",
"#A transmitter with o/p power=10W at fc=250MHz,connected to Tx 10m line with loss=3dB/100m t0 antenna with gain=6dBi.\n",
"#Rx antenna 20km away with gain=4dBi \n",
"#Refer fig.15.6,assuming free space propagation\n",
"d=20;fc=250.;Gt_dBi=6.;Gr_dBi=4.;loss=3./100;Zl=75.;Zo=50.;L=10.;Pt=10.;\n",
"#calculations\n",
"Lfs=32.44+(20*log10(d))+(20*log10(fc))-Gt_dBi-Gr_dBi;#path loss\n",
"\n",
"L_tx=L*loss;#Determination of loss\n",
"ref_coe=(Zl-Zo)/(Zl+Zo);#Reflection coefficient\n",
"L_rx=1-(ref_coe**2);#Proportion of incident power that reaches load\n",
"L_rx_dB=-10*log10(L_rx);#Converting that proportion in dB\n",
"#Determination of total loss Lt\n",
"Lt=(Lfs)+(L_tx)+(L_rx_dB);\n",
"#Determination of power delivered to receiver\n",
"Pt_Pr=10**(Lt/10);#Power ratio\n",
"Pr=Pt/Pt_Pr;\n",
"#results\n",
"print 'The power delivered to receiver is',Pr,'W'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7 : pg 530"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The angle of refraction is 10.313 degree\n"
]
}
],
"source": [
"#calculate the angle of refraction \n",
"#page no 530\n",
"#prob no. 15.7\n",
"#given\n",
"from math import sqrt, sin, asin,pi\n",
"#A radio wave moves from air(er=1) to glass(er=7.8).angle of incidence=30 deg\n",
"theta_i=30.;er1=1;er2=7.8;\n",
"#calculations\n",
"#determination of angle of refraction\n",
"theta_r=asin((sin(theta_i*pi/180.))/(sqrt(er2/er1)));\n",
"#results\n",
"print 'The angle of refraction is',round(theta_r*180/pi,3),'degree'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8 : pg 537"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The max usable freq MUF is 33.92 MHz\n"
]
}
],
"source": [
"#calculate the max usable freq \n",
"#page no 537\n",
"#prob no. 15.8\n",
"#given\n",
"from math import cos,pi\n",
"#A Tx statn with fc=11.6MHz & angle of incidence=70 degree\n",
"theta_i=70.;fc=11.6;#in MHz\n",
"#calculations\n",
"#determination of max usable freq(MUF)\n",
"MUF=fc/(cos(theta_i*pi/180.));\n",
"#results\n",
"print 'The max usable freq MUF is',round(MUF,2),'MHz'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9 : pg 539"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a)The max common distance between dispatcher & taxi 21.018 km\n",
"The max common distance between two taxi is 10.1 km\n"
]
}
],
"source": [
"#calculate the max common distance in both cases \n",
"#page no 539\n",
"#prob no. 15.9\n",
"#given\n",
"from math import sqrt\n",
"#A taxi compony using central dispatcher with antenna height=15m & taxi antenna height=1.5m\n",
"ht=15.;hr=1.5;\n",
"#calculations and results\n",
"#a)Determination of max commn dist betn dispatcher and taxi\n",
"d1=sqrt(17*ht)+sqrt(17*hr);\n",
"print 'a)The max common distance between dispatcher & taxi',round(d1,3),'km'\n",
"#b)Determination of max ommn dist betn 2 taxis\n",
"d2=sqrt(17*hr)+sqrt(17*hr);#ht=hr=height of antenna of taxi cab\n",
"print 'The max common distance between two taxi is',round(d2,3),'km'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11 : pg 545"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The fading period is 0.01125 sec\n",
"The fading period is 0.00474 sec\n"
]
}
],
"source": [
"#calculate the fading period in both cases \n",
"# page no 545\n",
"# prob no 15.11\n",
"#given\n",
"# An automobile travels at 60km/hr\n",
"v=60.*10**3/(60*60);#conversion of car's speedto m/s\n",
"c=3.*10**8;#speed of light\n",
"#part a) calculation of time between fades if car uses a cell phone at 800*10**6Hz\n",
"f=800.*10**6;\n",
"#calculations and results\n",
"T=c/(2*f*v);\n",
"print 'The fading period is',T,'sec'\n",
"#part b) calculation of time between fades if car uses a PCS phone at 1900*10**6Hz\n",
"f=1900.*10**6;\n",
"T=c/(2*f*v);\n",
"print 'The fading period is',round(T,5),'sec'\n",
"# Note that the rapidity of the fading increases with both the frequency of the transmissions and the speed of the vehicle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12 : pg 550"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of cell sites are 72.0\n"
]
}
],
"source": [
"#calculate the no. of cell sites \n",
"#page no 550\n",
"#given\n",
"# problem no 15.12\n",
"A=1000.;#metropolitian area expressed in sq. km\n",
"r=2;#radius of cell in km\n",
"#calculations\n",
"# Number of cell sites given as\n",
"N=A/(3.464*r**2);\n",
"#results\n",
"print 'Number of cell sites are',round(N)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|