1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
|
{
"metadata": {
"name": "",
"signature": "sha256:e528d450b010e6a0fc0701d08e663db71f95558ee29c88e64def041726f96bfa"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3: Amplitude Modulation Techniques"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1, page no. 36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"L = 50.0*pow(10,-6) # Transmitter Inductance (H)\n",
"C = 1.0*pow(10,-9) # Transmitter Capacitance (F)\n",
"AF_range = 10*pow(10,3) # Audio Frequency Range (Hz)\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"fc= 1/(2*math.pi*math.sqrt(L*C))# Center Frequency (Hz)\n",
"fl= fc-AF_range# Frequency of LSB (Hz)\n",
"fu= fc+AF_range# Frequency of USB (Hz)\n",
"\n",
"# Result\n",
"print \"Center Frequency, fc= \",math.ceil(fc/pow(10,3)),\"kHz\"\n",
"print \"Frequency Range occupied by the Sidebands is\",math.ceil(fl/pow(10,3)),\"to\",math.ceil(fu/pow(10,3)),\"kHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Center Frequency, fc= 712.0 kHz\n",
"Frequency Range occupied by the Sidebands is 702.0 to 722.0 kHz\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2, page no. 38"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"P_c = 400 # Carrier Power (W)\n",
"m = 0.75 # Modulation Index\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"P_AM = P_c*(1+pow(m,2)/2) # Total Power in the modulated Wave (W)\n",
"\n",
"# Result\n",
"print \"Total Power in the Modulated Wave is\",P_AM,\"W\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total Power in the Modulated Wave is 512.5 W\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3, page no. 39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"P_t = 10000 # Radio Transmitter Power (W)\n",
"m = 0.60 # Modulation Index\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"P_c = P_t/(1+pow(m,2)/2) # Carrier Power (W)\n",
"\n",
"# Result\n",
"print \"Carrier Power is\",round(P_c/pow(10,3),2),\"kW\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Carrier Power is 8.47 kW\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4, page no. 39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"I_t = 8.93 # Total Antenna current (A) \n",
"I_c = 8 # Carrier Antenna Current (A)\n",
"m = 0.80 # Modulation Index\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"m1 = math.sqrt(2*(pow(I_t/I_c,2)-1)) # Percentage Modulation (%)\n",
"I_t1 = I_c*math.sqrt(1+pow(m,2)/2) # Antenna Current (A)\n",
"\n",
"# Result\n",
"print \"Modulation Index calculated for first part is\",round(m1*100,1),\"%\"\n",
"print \"Antenna Current calculated for second part is\",round(I_t1,2),\"A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Modulation Index calculated for first part is 70.1 %\n",
"Antenna Current calculated for second part is 9.19 A\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5, page no. 41\u00b6"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"P_t = 10.125*pow(10,3) # Total Power(W)\n",
"P_c = 9.00*pow(10,3) # Carrier Power(W)\n",
"m2 = 0.40 # Modulation Index\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"m1 = math.sqrt(2*(P_t/P_c-1)) # Modulation Index\n",
"mt = math.sqrt(pow(m1,2)+pow(m2,2)) # Total Modulation index\n",
"P_AM = P_c*(1+pow(mt,2)/2) # Total Radiated Power(W)\n",
"\n",
"# Result\n",
"print \"Modulation Index of first part is, m =\",m1\n",
"print \"Total Modulation Index is, m_t =\",round(mt,2)\n",
"print \"Total Radiated Power, P_AM =\",P_AM/pow(10,3),\"kW\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Modulation Index of first part is, m = 0.5\n",
"Total Modulation Index is, m_t = 0.64\n",
"Total Radiated Power, P_AM = 10.845 kW\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6, page no. 41"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"I_t = 11 # Total Antenna current (A) \n",
"I_T = 12 # Total Antenna current for second part (A) \n",
"m1 = 0.40 # Modulation Index\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"I_c = I_t/math.sqrt(1+pow(m1,2)/2) # Current (A)\n",
"mt = math.sqrt(2*(pow(I_T/I_c,2)-1)) # Modulation Index\n",
"m2 = math.sqrt(pow(mt,2)-pow(m1,2)) # Modulation Index\n",
"\n",
"# Result\n",
"print \"Modulation Index calculated is\",round(m2,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Modulation Index calculated is 0.64\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7, page no. 44"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"P_c = 400 # Carrier Power (W)\n",
"m1 = 1.0 # Modulation Index (for first part)\n",
"m2 = 0.75 # Modulation Index (for second part)\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"# (i) Power saving of DSBSC compared to AM for 100% Modulation Depth\n",
"P_AM1=P_c*(1+pow(m1,2)/2) # Power of AM Wave (W)\n",
"P_DSBSC1=P_c*pow(m1,2)/2 # Power of DSBSC Wave (W)\n",
"Saving1=P_AM1-P_DSBSC1 # Power Saving (W)\n",
"# (ii) Power Required for DSBSC Wave Transmission for 75% Modulation Depth\n",
"P_DSBSC2=P_c*pow(m2,2)/2 # Power of DSBSC Wave (W)\n",
"\n",
"# Result\n",
"print \"(i) Power of AM Wave for\",m1*100,\"% Modulation Depth is\",P_AM1,\"W\"\n",
"print \" Power of DSBSC Wave for\",m1*100,\"% Modulation Depth is\",P_DSBSC1,\"W\"\n",
"print \" Power saving of DSBSC compared to AM for\",m1*100,\"% Modulation Depth is\",Saving1,\"W\"\n",
"print \"(ii) Power Required for DSBSC Wave Transmission for\",m2*100,\"% Modulation Depth is\",P_DSBSC2,\"W\"\n",
"print \" Power of DSBSC is maximum for m = 1, and less for m < 1.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Power of AM Wave for 100.0 % Modulation Depth is 600.0 W\n",
" Power of DSBSC Wave for 100.0 % Modulation Depth is 200.0 W\n",
" Power saving of DSBSC compared to AM for 100.0 % Modulation Depth is 400.0 W\n",
"(ii) Power Required for DSBSC Wave Transmission for 75.0 % Modulation Depth is 112.5 W\n",
" Power of DSBSC is maximum for m = 1, and less for m < 1.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8, page no. 45"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"P_DSBSC = 1000 # Total Power (W)\n",
"m = 0.60 # Modulation Index\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"P_c = P_DSBSC*(2/pow(m,2)) # Carrier Power (W)\n",
"\n",
"# Result\n",
"print \"We require\",round(P_c/pow(10,3),2),\"kW to transmit the carrier component along with the existing\",P_DSBSC/pow(10,3),\" kW for the sidebands.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"We require 5.56 kW to transmit the carrier component along with the existing 1 kW for the sidebands.\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9, page no.48"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"P_c = 400 # Carrier Power (W)\n",
"m1 = 1.0 # Modulation Index (for first part)\n",
"m2 = 0.75 # Modulation Index (for second part)\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"# (i) Power saving of SSB compared to AM AND DSBSC for 100% Modulation Depth\n",
"P_AM1 = P_c*(1+pow(m1,2)/2) # Power of AM Wave (w)\n",
"P_DSBSC1 = P_c*pow(m1,2)/2 # Power of DSBSC Wave (w)\n",
"P_SSB1 = P_c*pow(m1,2)/4 # Power of SSB Wave (w)\n",
"Saving1 = P_AM1-P_SSB1 # Power Saving (w)\n",
"Saving2 = P_DSBSC1-P_SSB1 # Power Saving (w)\n",
"# (ii) Power Required for SSB Wave Transmission for 75% Modulation Depth\n",
"P_SSB2 = P_c*pow(m2,2)/4 # Power of SSB Wave (w)\n",
"\n",
"# Result\n",
"\n",
"print \"(i) Power of SSB Wave for\",m1*100,\"% Modulation Depth is\",P_SSB1,\"W\"\n",
"print \" Power saving of SSB compared to AM for\",m1*100,\"% Modulation Depth is\",Saving1,\"W and compared to DSBSC for\",m1*100,\"% Modulation Depth is\",Saving2,\"W\"\n",
"print \"(ii) Power Required for SSB Wave Transmission for\",m2*100,\"% Modulation Depth is\",P_SSB2,\"W\"\n",
"print \" Power of SSB is maximum for m = 1, and less for m < 1.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Power of SSB Wave for 100.0 % Modulation Depth is 100.0 W\n",
" Power saving of SSB compared to AM for 100.0 % Modulation Depth is 500.0 W and compared to DSBSC for 100.0 % Modulation Depth is 100.0 W\n",
"(ii) Power Required for SSB Wave Transmission for 75.0 % Modulation Depth is 56.25 W\n",
" Power of SSB is maximum for m = 1, and less for m < 1.\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.10, page no. 49\u00b6"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"P_SSB = 0.5*pow(10,3) # Total Power (W)\n",
"m = 0.60 # Modulation Index\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"P_c = P_SSB*(4/pow(m,2)) # Carrier Power (W)\n",
"\n",
"# Result\n",
"print \"We require\",round(P_c/pow(10,3),2),\"kW to transmit the carrier component along with the existing\",P_SSB/pow(10,3),\"kW for the one sideband and\",1-P_SSB/pow(10,3),\"kW more for another sideband.\"\n",
"print \"In Total\",round(P_c/pow(10,3)+1,2),\"kW is required by the AM Transmitter\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"We require 5.56 kW to transmit the carrier component along with the existing 0.5 kW for the one sideband and 0.5 kW more for another sideband.\n",
"In Total 6.56 kW is required by the AM Transmitter\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.11, page no. 49"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"m1 = 1.0 # Modulation Index for (a)\n",
"m2 = 0.5 # Modulation Index for (b)\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"# (a) Percentage Power Saving for Depth of Modulation 100 %\n",
"PAM_by_Pc1 = 1+pow(m1,2)/2 # Ratio of AM Wave to Carrier Power (W)\n",
"PSSB_By_Pc1 = pow(m1,2)/4 # Ratio of SSB Wave to Carrier Power (W)\n",
"Saving1 = (PAM_by_Pc1-PSSB_By_Pc1)/PAM_by_Pc1 # Power Saving (W)\n",
"# (b) Percentage Power Saving for Depth of Modulation 50 %\n",
"PAM_by_Pc2 = 1+pow(m2,2)/2 # Ratio of AM Wave to Carrier Power (W)\n",
"PSSB_By_Pc2 = pow(m2,2)/4 # Ratio of SSB Wave to Carrier Power (W)\n",
"Saving2 = (PAM_by_Pc2-PSSB_By_Pc2)/PAM_by_Pc2 # Power Saving (W)\n",
"\n",
"# Result\n",
"print \"(a)Percentage Power Saving for Depth of Modulation of\",m1,\"is\",round(Saving1*100,1),\"%\"\n",
"print \"(b)Percentage Power Saving for Depth of Modulation of\",m2,\"is\",round(Saving2*100,1),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Percentage Power Saving for Depth of Modulation of 1.0 is 83.3 %\n",
"(b)Percentage Power Saving for Depth of Modulation of 0.5 is 94.4 %\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.12, page no. 52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"P_c = 400 # Carrier Power (W)\n",
"m1 = 1.0 # Modulation Index (for first part)\n",
"m2 = 0.75 # Modulation Index (for second part)\n",
"x = 0.2 # (*100)Percentage Wanted Sideband in VSB (%)\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"# (i) Power saving of VSB compared to AM, DSBSC and SSB for 100% Modulation Depth\n",
"P_AM1 = P_c*(1+pow(m1,2)/2) # Power of AM Wave (W)\n",
"P_DSBSC1 = P_c*pow(m1,2)/2 # Power of DSBSC Wave (W) \n",
"P_SSB1 = P_c*pow(m1,2)/4 # Power of SSB Wave (W)\n",
"P_VSB1 = P_c*pow(m1,2)/4+x*P_c*pow(m1,2)/4 # Power of VSB Wave (W)\n",
"Saving1 = P_AM1-P_VSB1 # Power Saving (W)\n",
"Saving2 = P_DSBSC1-P_VSB1 # Power Saving (W)\n",
"Saving3 = P_VSB1-P_SSB1 # Power Saving (W)\n",
"# (ii) Power Required for VSB Wave Transmission for 75% Modulation Depth\n",
"P_VSB2 = P_c*pow(m2,2)/4+x*P_c*pow(m2,2)/4 # Power of VSB Wave (W)\n",
"\n",
"# Result\n",
"print \"(i) Power Required for VSB Wave Transmission for\",m1*100,\"% Modulation Depth is\",P_VSB1,\"W\"\n",
"print \" Power saving of VSB compared to AM for\",m1*100,\"% Modulation Depth is\",Saving1,\"W and compared to DSBSC for\",m1*100,\"% Modulation Depth is\",Saving2,\"W and compared to SSB for\",m1*100,\"% Modulation Depth is\",Saving3,\"W\"\n",
"print \"(ii) Power Required for VSB Wave Transmission for\",m2*100,\"% Modulation Depth is\",P_VSB2,\"W\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Power Required for VSB Wave Transmission for 100.0 % Modulation Depth is 120.0 W\n",
" Power saving of VSB compared to AM for 100.0 % Modulation Depth is 480.0 W and compared to DSBSC for 100.0 % Modulation Depth is 80.0 W and compared to SSB for 100.0 % Modulation Depth is 20.0 W\n",
"(ii) Power Required for VSB Wave Transmission for 75.0 % Modulation Depth is 67.5 W\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.13, page no. 52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variable Declaration\n",
"P_VSB = 0.625*pow(10,3) # Total Power (W)\n",
"m = 0.60 # Modulation Index\n",
"x = 0.25 # (*100) Percentage Power Transmitted of other Sideband (%)\n",
"\n",
"# Calculation\n",
"import math # Math Library\n",
"P_c = P_VSB*(4/((1+x)*pow(m,2))) # Carrier Power (W)\n",
"\n",
"# Result\n",
"print \"We require\",round(P_c/pow(10,3),2),\"kW to transmit the carrier component along with the existing\",P_VSB/pow(10,3),\"kW for the one sideband and\",1-P_VSB/pow(10,3),\"kW more for rest of the other sidebands.\"\n",
"print \"In Total\",round(P_c/pow(10,3)+1,2),\"kW is required by AM Transmitter\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"We require 5.56 kW to transmit the carrier component along with the existing 0.625 kW for the one sideband and 0.375 kW more for rest of the other sidebands.\n",
"In Total 6.56 kW is required by AM Transmitter\n"
]
}
],
"prompt_number": 13
}
],
"metadata": {}
}
]
}
|