summaryrefslogtreecommitdiff
path: root/Electronic_Circuits_by_P._Raja/Chapter7.ipynb
blob: 78dc3860138ba6f30e2a10f024fd46ff0ba44cd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
{
 "metadata": {
  "name": "",
  "signature": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Solved Examination Paper"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exa 1.b - page 476"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given data\n",
      "R1= 10 # in k\u03a9\n",
      "R2= 10 # in k\u03a9\n",
      "Rf= 50 # in k\u03a9\n",
      "V= 2 # in V\n",
      "V1= V*R1/(R1+R2) # in V\n",
      "V01= -Rf/R1*V1 # in V\n",
      "print \"The value of V1 = %0.f Volts\" %(V1)\n",
      "print \"The value of V01 = %0.f Volts\" %(V01)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of V1 = 1 Volts\n",
        "The value of V01 = -5 Volts\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exa 2.a - page 479"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given data\n",
      "V_P= -4 # in V\n",
      "I_DSS= 10 # in mA\n",
      "V_GS= 0 # in V\n",
      "R_D= 1.8 # in k\u03a9\n",
      "V_DD= 20 # in V\n",
      "I_D= I_DSS*(1-V_GS/V_P)**2 # in mA\n",
      "# Applying KVL to the circuit, we get V_DD= I_D*R_D+V_D\n",
      "V_D= V_DD-I_D*R_D # in V\n",
      "print \"The value of I_D = %0.f mA\" %(I_D)\n",
      "print \"The value of V_D = %0.f Volts\" %V_D"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of I_D = 10 mA\n",
        "The value of V_D = 2 Volts\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exa 2.c - page 480"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given data\n",
      "V_GS= 3 # in V\n",
      "Vth= 1 # in V\n",
      "unCox= 25 # in mA/V**2\n",
      "unCox= unCox*10**-3 # in A/V**2\n",
      "W=3 # in \u00b5m\n",
      "L=1 # in \u00b5m\n",
      "r_DS= 1/(unCox*W/L*(V_GS-Vth)) # in \u03a9\n",
      "print \"The value of r_DS = %0.2f \u03a9 \" %r_DS"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of r_DS = 6.67 \u03a9 \n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exa 3.b - page 481"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given data\n",
      "I_CQ= 10 # in mA\n",
      "I_CQ= I_CQ*10**-3 # in A\n",
      "V_CQ= 5 # in V\n",
      "V_CC= 10 # in V\n",
      "R_C= 0.4 # in k\u03a9\n",
      "R_C= R_C*10**3 # in \u03a9\n",
      "V_BE= 0.075 # in V\n",
      "V_BB= 0.175 # in V\n",
      "beta=100 \n",
      "beta_max=120 \n",
      "beta_min= 40 \n",
      "# Applying KVL we get, V_CQ= V_CC-I_C*(R_C+R_E)\n",
      "R_E= (V_CC-V_CQ)/I_CQ-R_C # in \u03a9\n",
      "print \"The value of R_E = %0.f \u03a9\" %( R_E)\n",
      "I_B= I_CQ/beta # in A\n",
      "R_B= (V_BB-V_BE)/I_B # in \u03a9\n",
      "print \"The value of R_B = %0.f k\u03a9\" %(R_B*10**-3)\n",
      "I_Cmax= beta_max*I_B # in A\n",
      "I_Cmin= beta_min*I_B # in A\n",
      "delta_I_CQ= I_Cmax-I_Cmin # in A\n",
      "print \"The value of delta_I_C = %0.f mA\" %(delta_I_CQ*10**3)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of R_E = 100 \u03a9\n",
        "The value of R_B = 1 k\u03a9\n",
        "The value of delta_I_C = 8 mA\n"
       ]
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}