1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 14 : Protective Relayes"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.1, Page No 366"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"If=4000.0\t# fault current \n",
"I=5*1.25\t# operating current of relay \n",
"\n",
"#Calculations\n",
"CT=400.0/5\t# CT ratio\n",
"PSM=If/(I*CT)\t# plug setting multiplier\n",
"\n",
"#Results\n",
"print(\"PSM =%.2f\" %PSM)\n",
"print(\"operating time for PSM=8 is 3.2sec.\")\n",
"print(\"actual operating time = 1.92 sec.\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"PSM =8.00\n",
"operating time for PSM=8 is 3.2sec.\n",
"actual operating time = 1.92 sec.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.2, Page No 369"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Z=1000.0*complex(math.cos(math.radians(60)),math.sin(math.radians(60))) #impedence\n",
"X=math.cos(math.radians(50))*1000*math.cos(math.radians(60))\n",
"Xl=1000.0*math.cos(math.radians(60))\n",
"Xc=Xl-X\n",
"\n",
"#Calculations\n",
"C=1000000.0/(314.0*Xc)\n",
"\n",
"#Results\n",
"#Answers don't match due to difference in rounding off of digits\n",
"print(\"X= %.2f\" %X)\n",
"print(\"Xc= %.2f\" %Xc)\n",
"print(\"C(micro farads)= %.2f\" %C)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"X= 321.39\n",
"Xc= 178.61\n",
"C(micro farads)= 17.83\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.3, Page No 384"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Isec1=4000.0/40# secondary current(amps)\n",
"PSM=100.0/5# PSM if 100% setting is used\n",
"Isec2=4000.0/40\n",
"PSM2=100.0/6.25#PSM if setting used is 125%\n",
"TMSb=0.72/2.5\n",
"\n",
"#Calculations\n",
"PSM1=5000.0/(6.25*40)\n",
"to=2.2\n",
"tb=to*TMSb\n",
"PSMa=5000/(6.25*80)\n",
"TMS=1.138/3\n",
"PSMa1=6000/(6.25*80)\n",
"ta=(2.6*.379)\n",
"\n",
"#Results\n",
"print(\"Actual operating time of realy at b=%.3f sec\" %tb)\n",
"print(\"Actual operating time of realy at a=%.3f sec \" %ta)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Actual operating time of realy at b=0.634 sec\n",
"Actual operating time of realy at a=0.985 sec \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.4 Page No 399"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Vph=6600/(math.sqrt(3))\n",
"Ifull=5000/(math.sqrt(3)*6.6)\n",
"\n",
"#Calculations\n",
"Ib=Ifull*.25\n",
"x=Ib*800.0/Vph\n",
"\n",
"#Results\n",
"print(\"Percent of the winding remains unprotected = %.2f \" %x)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Percent of the winding remains unprotected = 22.96 \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.5, Page No 399"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Iph=10000.0/math.sqrt(3)\t# phase voltage of alternator(V)\n",
"x=1.8*100*10*1000.0/(5*Iph)\n",
"\n",
"#Calculations\n",
"print(\"(i) percent winding which remains unprotected=%.2f \" %x)\n",
"Ip=Iph*.2\n",
"R=1.8*1000.0/(5*Ip)\n",
"\n",
"#Results\n",
"print(\"(ii)minimum value of earthing resistance required to protect 80 percent of winding =%.4f ohms\" %R)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) percent winding which remains unprotected=62.35 \n",
"(ii)minimum value of earthing resistance required to protect 80 percent of winding =0.3118 ohms\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.6, Page No 400"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Ic=360-320 # the difference current (amp)\n",
"Io=40*5/400.0\n",
"\n",
"#Calculations\n",
"Avg=(360+320)/2 # average sum of two currents\n",
"Iavg=340*5/400.0\n",
"Ioc=.1*Iavg +0.2\n",
"\n",
"#Results\n",
"print(\"operating current=%.3f amp. \" %Ioc)\n",
"print(\"since current through operating coil is %.3f amp. \" %Io)\n",
"print(\"therefore Relay will not operate \")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"operating current=0.625 amp. \n",
"since current through operating coil is 0.500 amp. \n",
"therefore Relay will not operate \n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.7 Page No 403"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Il=400*6.6/33.0\t\t# line current on star side of PT(amps)\n",
"\n",
"#Calculations\n",
"Ic=5/math.sqrt(3.0)\t\t# current in CT secondary \n",
"\n",
"#Results\n",
"print(\" The CT ratio on HT will be %d : %.3f\" %(Il,Ic))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The CT ratio on HT will be 80 : 2.887\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.8, Page No 404"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Il=10000.0/((math.sqrt(3.0))*132)\n",
"ILV=10000/((math.sqrt(3.0))*6.6)\n",
"\n",
"#Calculations\n",
"a=5.0/math.sqrt(3.0)\n",
"\n",
"#Results\n",
"print(\"Ratio of CT on LV side is %.3f : %.3f\" %(ILV,a))\n",
"print(\"Ratio of CT on HT side is %.3f : %d\" %(Il,5))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Ratio of CT on LV side is 874.773 : 2.887\n",
"Ratio of CT on HT side is 43.739 : 5\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.9 Page No 404"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Vs=110.0\n",
"I=1.0\n",
"\n",
"#Calculations\n",
"R2=Vs/(complex(3, -math.sqrt(3))*I)\n",
"c=abs(R2)\n",
"print(\"R2=%.2f ohms\" %c)\n",
"R1=2*c\n",
"d=abs(R1)\n",
"C=(10**6)/(0.866*d*314)\n",
"print(\"R1=%.2f ohms \" %R1)\n",
"print(\"C=%.1f micro farads \" %C)\n",
"Vt=d*complex(-0.5,-0.866) + complex(c,-55 )\n",
"\n",
"#Results\n",
"print(\" Voltage across the terminals of the relay will be (V)= {0:.5f}+{1:.5f}i\" .format(Vt.real, Vt.imag))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"R2=31.75 ohms\n",
"R1=63.51 ohms \n",
"C=57.9 micro farads \n",
" Voltage across the terminals of the relay will be (V)= 0.00000+-109.99839i\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.10 Page No 272"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Ic=5*0.25\t\t# operating current(amp)\n",
"Vsec=5.0/1.25\t# secondary voltage(V)\n",
"Bm=1.4\n",
"f=50\n",
"N=50\n",
"\n",
"#Calculations\n",
"V=15*Vsec\n",
"A=60/(4.44*Bm*f*N)\n",
"\n",
"#Results\n",
"print(\"The knee point must be slightly higher than =%.3f V \" %V)\n",
"print(\"Area of cross section=%.6f m_2 \" %A)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The knee point must be slightly higher than =60.000 V \n",
"Area of cross section=0.003861 m_2 \n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.11 Page No 273"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"\n",
"#Calculations\n",
"o_p=5*5*(.1+.1) +5\n",
"\n",
"#Results\n",
"print(\" VA output of CT =%.0f VA\\n \" %o_p)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" VA output of CT =10 VA\n",
" \n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|